Fatty acid biosynthesis is an essential component of metabolism in both eukaryotes and prokaryotes. The fatty acid biosynthetic pathway of Gram-negative bacteria is an established therapeutic target. Two homologous enzymes FabA and FabZ catalyze a key step in fatty acid biosynthesis; both dehydrate hydroxyacyl fatty acids that are coupled via a phosphopantetheine to an acyl carrier protein (ACP). The resulting trans-2-enoyl-ACP is further polymerized in a processive manner. FabA, however, carries out a second reaction involving isomerization of trans-2-enoyl fatty acid to cis-3-enoyl fatty acid. We have solved the structure of Pseudomonas aeruginosa FabA with a substrate allowing detailed molecular insight into the interactions of the active site. This has allowed a detailed examination of the factors governing the second catalytic step. We have also determined the structure of FabA in complex with small molecules (so-called fragments). These small molecules occupy distinct regions of the active site and form the basis for a rational inhibitor design program.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2012.11.017DOI Listing

Publication Analysis

Top Keywords

fatty acid
20
carrier protein
8
pseudomonas aeruginosa
8
acid biosynthesis
8
active site
8
small molecules
8
fatty
6
acid
5
structural insights
4
insights mechanism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!