To understand the nighttime water recharge of tree through its sap flow is beneficial to the precise estimation of total transpiration and canopy stomatal conductance, and to the further understanding of the time lag between canopy transpiration and stem sap flow. By using Granier's thermal dissipation probe, this paper measured the stem sap flow of Schima superba, and synchronously measured the main environmental factors including air temperature, relative humidity, photosynthetically active radiation, and soil moisture content, and also analyzed the water recharge through nighttime stem flow of S. superba at daily and seasonal scales. The sap flow density of S. superba was lower at night than at daytime, and the nighttime sap flow density had a larger variation in dry season than in wet season. The water recharge at night generally started from sunset when radiation was approaching zero, and lasted up to midnight (18:00-22:00). No significant difference was observed in the nighttime water recharge among seasons, and no significant correlations were found between the nighttime water recharge and environmental factors, but the nighttime water recharge was well regressed with the diameter at breast height, tree height, tree canopy size, stem biomass, and canopy biomass, suggesting that tree form features and biomass could better explain the nighttime water recharge. The contribution of nighttime water recharge to the total transpiration varied significantly with seasons, and was obviously higher in dry season than in wet season.

Download full-text PDF

Source

Publication Analysis

Top Keywords

water recharge
32
sap flow
24
nighttime water
24
stem sap
12
nighttime
9
recharge nighttime
8
nighttime stem
8
flow schima
8
schima superba
8
water
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!