In this study the use of micro-liquid chromatography coupled to tandem mass spectrometry (μLC-MS/MS) was investigated in routine bioanalysis application for separation and quantification of pro-drug AZD6319 (developed for aldezheimer treatment). Microextraction by packed sorbent (MEPS) was used as sample clean-up method. The focus of this study was put on the evaluation of the usability of smaller column diameters such as 1.0 and 0.3 mm instead of 2.1 mm in bioanalysis application to reduce solvent consumption and sample volumes. Solvent consumption was reduced by 80% when a 1.0 mm column was used compared with 2.1 mm column. Robustness of the micro-columns in terms of accuracy and precision was investigated. The application of μLC-MS/MS for the quantitative analysis of AZD6319 in plasma samples showed good selectivity, accuracy and precision. The coefficients of determination (R(2) ) were >0.998 for all runs using plasma samples on the studied micro-columns. The inter-day accuracy values for quality control samples ranged from 99 to 103% and from 96 to 105% for 0.3 × 50 mm and 1.0 × 50 mm columns, respectively. The inter-day precision values ranged from 4.0 to 9.0% and from 4.0 to 8.0% for 0.3 × 50 and 1.0 × 50 mm columns, respectively. In addition the sensitivity was increased by three times using a 1.0 mm column compared with 2.1 mm. Furthermore, robustness of the micro-columns from different manufacturers was investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bmc.2839DOI Listing

Publication Analysis

Top Keywords

microextraction packed
8
packed sorbent
8
mass spectrometry
8
bioanalysis application
8
solvent consumption
8
10 mm column
8
column compared
8
compared 21 mm
8
robustness micro-columns
8
accuracy precision
8

Similar Publications

In an attempt to enhance the adsorptive properties while addressing the limitations associated with powdered nature, zeolitic imidazolate framework (ZIF-67)-derived cobalt-doped nanoporous carbon (Co-NPC) was incorporated into chitosan and then shaped like hollow fiber by a simple casting method. Further modification with polyaniline (PANI) was also performed to improve extraction efficacy. The applicability of the modified hollow fibers was then investigated by packing them into a cartridge and utilizing them for conducting hollow fibers-packed in-cartridge micro solid-phase extraction (HF-IC µ-SPE) of parabens including methylparaben (MP), ethylparaben (EP), and propylparaben (PP) from human breast milk samples.

View Article and Find Full Text PDF

The release of harmful compounds, particularly dangerous metal ions, into the environment has drawn deep concern from the scientific community. Therefore, it has become common in research to evaluate and quantify the harmful concentrations in the presence of these metal ions in several real samples (food, water, and biological samples). To increase sensitivity and lessen the impact of the matrix, sample pretreatment is a helpful strategy to implement before analysis.

View Article and Find Full Text PDF

Infection of In Vivo and In Vitro Pines with the Pinewood Nematode Bursaphelenchus xylophilus and Isolation of Induced Volatiles.

J Vis Exp

September 2024

INIAV, I.P., National Institute for Agrarian and Veterinary Research, I.P.; GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA).

The pinewood nematode (PWN) is a phytoparasite that causes pine wilt disease (PWD) in conifer species. This plant parasitic nematode has heavily contributed to pine deforestation in Asian countries, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Sample preparation is still a major challenge in analytical processes, despite improvements in instruments, with solid-phase extraction becoming favored over traditional methods due to its simplicity and reduced solvent needs.
  • Various microextraction techniques, particularly in-tube solid-phase microextraction (IT-SPME), have been developed for more efficient sample handling and automation, offering a "green extraction technique" option that minimizes solvent use.
  • Innovative materials like molecularly imprinted polymers (MIPs) are enhancing extraction efficiency; MIPs are custom-designed adsorbents that are created through a specific fabrication process to recognize and selectively bind target molecules.
View Article and Find Full Text PDF
Article Synopsis
  • A new method called fiber-in-tube solid-phase microextraction (FIT-SPME) was developed to extract and analyze nine polycyclic aromatic hydrocarbons from refinery water samples using high-performance liquid chromatography with a UV detector.
  • * The method utilizes a special material, UiO-66, applied to stainless steel wires to enhance extraction efficiency.
  • * Results showed strong accuracy with a wide detection range and low relative standard deviations, indicating the method's reliability for analyzing water samples with high dissolved solids.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!