Site-selective labeling of endogenous proteins represents a major challenge in chemical biology, mainly due to the absence of unique reactive groups that can be addressed selectively. Recently, we have shown that surface-exposed lysine residues of two endogenous proteins and a peptide exhibit subtle changes in their individual reactivities. This feature allows the modification of a single residue in a highly site-selective fashion if kinetically controlled labeling conditions are applied. In order to broaden the scope of the "kinetically-controlled protein labeling" (KPL) approach and highlight additional applications, the water-soluble bioorthogonal reagent, biotin-TEO-azido-NHS (11), is developed which enables the site-selective introduction of an azido group onto endogenous proteins/peptides. This bioconjugation reagent features a biotin tag for affinity purification, an azido group for bioorthogonal labeling, a TEO (tetraethylene oxide) linker acting as a spacer and to impart water solubility and an N-hydroxysuccinimidyl (NHS) ester group for reacting with the exposed lysine residue. As a proof of concept, the native protein ribonuclease A (RNase A) bearing ten available lysine residues at the surface is furnished with a single azido group at Lys 1 in a highly site-selective fashion yielding azido-(K1)RNase A. The K1 site-selectivity is demonstrated by the combined application and interpretation of high resolution MALDI-ToF mass spectroscopy, tandem mass spectroscopy and extracted ion chromatography (XIC). Finally, the water soluble azide-reactive phosphine probe, rho-TEO-phosphine (21) (rho: rhodamine), has been designed and applied to attach a chromophore to azido-(K1)RNase A via Staudinger ligation at physiological pH indicating that the introduced azido group is accessible and could be addressed by other established azide-reactive bioorthogonal reaction schemes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2ob26561c | DOI Listing |
Molecules
December 2024
Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
Pronucleotides, after entering the cell, undergo chemical or enzymatic conversion into nucleotides with a free phosphate residue, and the released nucleoside 5'-monophosphate is then phosphorylated to the biologically active form, namely nucleoside 5'-triphosphate. The active form can inhibit HIV virus replication. For the most effective therapy, it is necessary to improve the transport of prodrugs into organelles.
View Article and Find Full Text PDFMolecules
November 2024
Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad (IACYS)-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, 06006 Badajoz, Spain.
This publication reports a facile and convenient preparation of tri--acetyl-glucopyranoses, derived from the corresponding 2-deoxyaminosugar, where the vicinal anomeric and C2 positions are decorated by azido and (thio)ureido groups, respectively. This double functionalization leads to an inherently chiral core incorporating the versatile azido and (thio)ureido linkages prone to further manipulation. The latter also provides a structural element for hydrogen-bonded donor-acceptor (HB-DA) sites, which are of immense value in organocatalytic pursuits.
View Article and Find Full Text PDFSteroids
December 2024
Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea. Electronic address:
Natural α-spinasterol is well known for its various biological activities. In this study, we investigated the anti-inflammatory effects of newly synthesized α-spinasterol derivatives by tracking the expression of CCL17 and CCL22 chemokines, which serve as biomarkers for immune cell trafficking in skin inflammation. Initially, the 3-epimer of α-spinasterol, which results from inversion of stereochemistry at the C-3 position of α-spinasterol, was synthesized using the Mitsunobu reaction.
View Article and Find Full Text PDFIn the hydrated title complex, [Fe(dpa)(N)]·HO (dpa is 2,2'-di-pyridyl-amine, CHN), the Fe ion is coordinated in a distorted octa-hedral manner by two neutral, chelating dpa ligands and two anionic, monodentate azide (N ) ions in a -configuration. Distortion results from different Fe-N bond lengths [2.1397 (13)-2.
View Article and Find Full Text PDFSmall
December 2024
Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamic Research (BDR), Chuo-ku, Kobe, 650-0047, Japan.
For the development of highly multifunctionalized nanomaterials, the introduction of functional molecules on gold nanoclusters containing thiols preinstalled with connecting groupsconstitutes a promising approach. However, the uniform introduction of multiple connecting groups while avoiding side reactions is a challenging task. Herein, the synthesis of gold nanoclusters (ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!