The present paper reports on the facile preparation of novel Ni(II)-based metal-organic coordination polymer nanoparticle/reduced graphene oxide (NiCPNP/rGO) nanocomposites for the first time. The formation of the nanocomposites occurs in a single step, carried out by hydrothermal treatment of the mixture of tannic acid functioned graphene oxide and NiCl(2) aqueous solution in N,N-dimethylformamide. It is found that the NiCPNP/rGO nanocomposite-modified electrode shows high electrocatalytic activity for glucose oxidation in alkaline medium. This nonenzymatic glucose sensor exhibits high selectivity toward glucose and the linear range and limit of detection are estimated to be from 0.01 to 8.75 mM (r: 0.997) and 0.14 μM with a signal-to-noise ratio of 3, respectively. The application of this glucose sensor in human blood serum has also been demonstrated successfully.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2an36194aDOI Listing

Publication Analysis

Top Keywords

graphene oxide
12
novel niii-based
8
niii-based metal-organic
8
metal-organic coordination
8
coordination polymer
8
polymer nanoparticle/reduced
8
nanoparticle/reduced graphene
8
nonenzymatic glucose
8
glucose sensor
8
glucose
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!