Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hydrophobic hydration is considered to have a key role in biological processes ranging from membrane formation to protein folding and ligand binding. Historically, hydrophobic hydration shells were thought to resemble solid clathrate hydrates, with solutes surrounded by polyhedral cages composed of tetrahedrally hydrogen-bonded water molecules. But more recent experimental and theoretical studies have challenged this view and emphasized the importance of the length scales involved. Here we report combined polarized, isotopic and temperature-dependent Raman scattering measurements with multivariate curve resolution (Raman-MCR) that explore hydrophobic hydration by mapping the vibrational spectroscopic features arising from the hydrophobic hydration shells of linear alcohols ranging from methanol to heptanol. Our data, covering the entire 0-100 °C temperature range, show clear evidence that at low temperatures the hydration shells have a hydrophobically enhanced water structure with greater tetrahedral order and fewer weak hydrogen bonds than the surrounding bulk water. This structure disappears with increasing temperature and is then, for hydrophobic chains longer than ~1 nm, replaced by a more disordered structure with weaker hydrogen bonds than bulk water. These observations support our current understanding of hydrophobic hydration, including the thermally induced water structural transformation that is suggestive of the hydrophobic crossover predicted to occur at lengths of ~1 nm (refs 5, 9, 10, 14).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature11570 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!