A(3) adenosine receptor mediates apoptosis in 5637 human bladder cancer cells by G(q) protein/PKC-dependent AIF upregulation.

Cell Physiol Biochem

Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Japan.

Published: September 2014

Background/aims: A(3) adenosine receptor mediates apoptosis in a variety of cancer cells via diverse signaling pathways. The present study was conducted to assess A(3) adenosine receptor-mediated apoptosis in human bladder cancer cell lines and to understand the underlying mechanism.

Methods: Human bladder cancer cell lines such as 253J, 5637, KK-47, TCCSUP, T24, and UMUC-3 cells were cultured. The siRNA to silence the A(3) adenosine receptor-targeted gene was constructed and transfected into cells. MTT assay, TUNEL staining, Western blotting, and real-time RT-PCR were carried out.

Results: For all the investigated cell types adenosine induced apoptosis in a concentration (0.01-10 mM)- and treatment time (24-48 h)-dependent manner. Adenosine-induced 5637 cell death was significantly inhibited by the A(3) adenosine receptor inhibitor MRS1191 or knocking-down A(3) adenosine receptor, and the A(3) adenosine receptor agonist 2-Cl-IB-MECA mimicked the adenosine effect. The adenosine effect was prevented by GF109203X, an inhibitor of protein kinase C (PKC), but it was not affected by forskolin, an activator of adenylate cyclase. Adenosine-induced 5637 cell death, alternatively, was not inhibited by the pan-caspase inhibitor Z-VAD. Adenosine upregulated expression of apoptosis-inducing factor (AIF), that is suppressed by knocking-down A(3) adenosine receptor, and accumulated AIF in the nucleus.

Conclusion: The results of the present study show that adenosine induces 5637 cell apoptosis by upregulating AIF expression via an A(3) adenosine receptor-mediated G(q) protein/PKC pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000343306DOI Listing

Publication Analysis

Top Keywords

adenosine receptor
24
adenosine
14
human bladder
12
bladder cancer
12
5637 cell
12
receptor mediates
8
mediates apoptosis
8
cancer cells
8
adenosine receptor-mediated
8
cancer cell
8

Similar Publications

Attributes novel drug candidate: Constitutive GPCR signal bias mediated by purinergic receptors.

Pharmacol Ther

January 2025

School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.

G protein-coupled receptors (GPCRs) can transmit signals via G protein-dependent or independent pathways due to the conformational changes of receptors and ligands, which is called biased signaling. This concept posits that ligands can selectively activate a specific signaling pathway after receptor activation, facilitating downstream signaling along a preferred pathway. Biased agonism enables the development of ligands that prioritize therapeutic signaling pathways while mitigating on-target undesired effects.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Loss of Affects m6A Modification but Not Semen Characteristics in Bull Spermatozoa.

Int J Mol Sci

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China.

N6-methyladenosine (m6A) modification is a key methylation modification involved in reproductive processes. gene editing (MT) in cattle is known to enhance muscle mass and productivity. However, the changes in m6A modification in MT bull sperm remain poorly understood.

View Article and Find Full Text PDF

Background/objectives: Recent advances in stroke genetics have substantially enhanced our understanding of the complex genetic architecture underlying cerebral infarction and other stroke subtypes. As knowledge in this field expands, healthcare providers must remain informed about these latest developments. This review aims to provide a comprehensive overview of recent advances in stroke genetics, with a focus on cerebral infarction, and discuss their potential impact on patient care and future research directions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!