A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A framework for identifying carbon hotspots and forest management drivers. | LitMetric

A framework for identifying carbon hotspots and forest management drivers.

J Environ Manage

School of Forest Resources and Conservation, University of Florida, 373 Newins Ziegler Hall, PO Box 110410, Gainesville, FL 32611, USA.

Published: January 2013

Spatial analyses of ecosystem system services that are directly relevant to both forest management decision making and conservation in the subtropics are rare. Also, frameworks that identify and map carbon stocks and corresponding forest management drivers using available regional, national, and international-level forest inventory datasets could provide insights into key forest structural characteristics and management practices that are optimal for carbon storage. To address this need we used publicly available USDA Forest Service Forest Inventory and Analysis data and spatial analyses to develop a framework for mapping "carbon hotspots" (i.e. areas of significantly high tree and understory aboveground carbon stocks) across a range of forest types using the state of Florida, USA as an example. We also analyzed influential forest management variables (e.g. forest types, fire, hurricanes, tenure, management activities) using generalized linear mixed modeling to identify drivers associated with these hotspots. Most of the hotspots were located in the northern third of the state some in peri-urban areas, and there were no identifiable hotspots in South Florida. Forest silvicultural treatments (e.g. site preparation, thinning, logging, etc) were not significant predictors of hotspots. Forest types, site quality, and stand age were however significant predictors. Higher site quality and stand age increased the probability of forests being classified as a hotspot. Disturbance type and time since disturbance were not significant predictors in our analyses. This framework can use globally available forest inventory datasets to analyze and map ecosystems service provision areas and bioenergy supplies and identify forest management practices that optimize these services in forests.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2012.10.020DOI Listing

Publication Analysis

Top Keywords

forest management
20
forest
14
forest inventory
12
forest types
12
hotspots forest
8
management drivers
8
spatial analyses
8
carbon stocks
8
inventory datasets
8
management practices
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!