Background: To improve risk factor management in diabetes, we need to support effective interactions between patients and healthcare providers. Our aim is to develop and evaluate a treatment decision aid that offers personalised information on treatment options and outcomes, and is intended to empower patients in taking a proactive role in their disease management. Important features are: (1) involving patients in setting goals together with their provider; (2) encourage them to prioritise on treatments that maximise relevant outcomes; and (3) integration of the decision aid in the practice setting and workflow. As secondary aim, we want to evaluate the impact of different presentation formats, and learn more from the experiences of the healthcare providers and patients with the decision aid.

Methods And Design: We will conduct a randomised trial comparing four formats of the decision aid in a 2 × 2 factorial design with a control group. Patients with type 2 diabetes managed in 18 to 20 primary care practices in The Netherlands will be recruited. Excluded are patients with a recent myocardial infarction, stroke, heart failure, angina pectoris, terminal illness, cognitive deficits, > 65 years at diagnosis, or not able to read Dutch. The decision aid is offered to the patients immediately before their quarterly practice consultation. The same decision information will be available to the healthcare provider for use during consultation. In addition, the providers receive a set of treatment cards, which they can use to discuss the benefits and risks of different options. Patients in the control group will receive care as usual. We will measure the effect of the intervention on patient empowerment, satisfaction with care, beliefs about medication, negative emotions, health status, prescribed medication, and predicted cardiovascular risk. Data will be collected with questionnaires and automated extraction from medical records in 6 months before and after the intervention.

Discussion: This decision aid is innovative in supporting patients and their healthcare providers to make shared decisions about multiple treatments, using the patient's data from electronic medical records. The results can contribute to the further development and implementation of electronic decision support tools for the management of chronic diseases.

Trial Registration: Dutch Trial register NTR1942.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561233PMC
http://dx.doi.org/10.1186/1745-6215-13-219DOI Listing

Publication Analysis

Top Keywords

decision aid
24
healthcare providers
12
patients
10
decision
9
treatment decision
8
risk factor
8
factor management
8
patients healthcare
8
control group
8
medical records
8

Similar Publications

Clinical risk prediction models are ubiquitous in many surgical domains. The traditional approach to develop these models involves the use of regression analysis. Machine learning algorithms are gaining in popularity as an alternative approach for prediction and classification problems.

View Article and Find Full Text PDF

Human vs Machine: The Future of Decision-making in Plastic and Reconstructive Surgery.

Aesthet Surg J

January 2025

Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Altınbas University, Istanbul, Turkey.

Background: Artificial intelligence (AI)-driven technologies offer transformative potential in plastic surgery, spanning pre-operative planning, surgical procedures, and post-operative care, with the promise of improved patient outcomes.

Objectives: To compare the web-based ChatGPT-4o (omni; OpenAI, San Francisco, CA) and Gemini Advanced (Alphabet Inc., Mountain View, CA), focusing on their data upload feature and examining outcomes before and after exposure to CME articles, particularly regarding their efficacy relative to human participants.

View Article and Find Full Text PDF

How Outcome Prediction Could Aid Clinical Practice.

Br J Hosp Med (Lond)

January 2025

Department of Surgery & Cancer, Imperial College London, London, UK.

Predictive algorithms have myriad potential clinical decision-making implications from prognostic counselling to improving clinical trial efficiency. Large observational (or "real world") cohorts are a common data source for the development and evaluation of such tools. There is significant optimism regarding the benefits and use cases for risk-based care, but there is a notable disparity between the volume of clinical prediction models published and implementation into healthcare systems that drive and realise patient benefit.

View Article and Find Full Text PDF

Accurately identifying and discriminating between different brain states is a major emphasis of functional brain imaging research. Various machine learning techniques play an important role in this regard. However, when working with a small number of study participants, the lack of sufficient data and achieving meaningful classification results remain a challenge.

View Article and Find Full Text PDF

Trigeminal neuralgia (TN) is an excruciating neurological disorder characterized by intense, stimulus-induced, and transient facial stabbing pain. The classification of TN has changed as a result of new discoveries in the last decade regarding its symptomatology, pathogenesis, and management. Because different types of facial pain have different clinical therapy and neuroimaging interpretations, a precise diagnosis is essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!