In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn304630h | DOI Listing |
Heliyon
January 2025
School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
Metal-organic framework (MOF) derived porous FeO/C powders were applied for absorption of microwaves in the frequency range of 1-18 GHz. The effects of the polyvinylpyrrolidone (PVP) additive on the synthesis of MIL101-(Fe) precursor were studied by various characterization methods. By adding PVP, the impure hematite phase (α-FeO) with magnetite phase (FeO) was disappeared and the particular morphology was transformed to the porous rod-like, leading to the increase of specific surface area from 150 to 282 m/g.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.
View Article and Find Full Text PDFLangmuir
January 2025
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran.
Carbon microspheres (CMSs) are recognized as highly effective microwave absorbers due to their exceptional wave absorption properties. In this study, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin, a metamaterial, was chemically bonded to CMSs─considered a conjugated carbon structure─using a 1,3-dibromopropane linker to explore the synergistic properties and microwave absorption capabilities of the synthesized composite. The synthesized structures were characterized by using X-ray diffraction, FE-SEM, Fourier transform infrared, diffuse reflectance spectroscopy, and VNA analyses.
View Article and Find Full Text PDFNat Commun
January 2025
College of Materials Science and Technology; Key Laboratory of Material Preparation and Protection for Harsh Environment; Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, China.
With the development of nanotechnology, nano-functional units of different dimensions, morphologies, and sizes exhibit the potential for efficient microwave absorption (MA) performance. However, the multi-unit coupling enhancement mechanism triggered by the alignment and orientation of nano-functional units has been neglected, hindering the further development of microwave absorbing materials (MAMs). In this paper, two typical ZIF-derived nanomaterials are self-assembled into two-dimensional ordered polyhedral superstructures by the simple ice template method.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical Engineering Department, Kuwait University, 13060, Kuwait City, Kuwait.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!