We report the design and synthesis of triazolyl donor/acceptor unnatural nucleosides via click chemistry and studies on the duplex stabilization of DNA containing two such new nucleosides. The observed duplex stabilization among the self-pair/heteropair has been found to be comparable to that of a natural A/T pair. Our observations on the comparable duplex stabilization has been explained on the basis of possible π-π stacking and/or charge transfer interactions between the pairing partners. The evidence of ground-state charge transfer complexation came from the UV-vis spectra and the static quenching of fluorescence in a heteropair. We have also exploited one of our unnatural DNAs in stabilizing abasic DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo302033f | DOI Listing |
Nucleic Acids Res
December 2024
Friedrich Schiller University, Institute of Microbiology, 07743 Jena, Germany.
Gene regulation at the post-transcriptional level is prevalent in all domains of life. In bacteria, ProQ-like proteins have emerged as important RNA chaperones facilitating RNA stability and RNA duplex formation. In the major human pathogen Vibrio cholerae, post-transcriptional gene regulation is key for virulence, biofilm formation, and antibiotic resistance, yet the role of ProQ has not been studied.
View Article and Find Full Text PDFJ Org Chem
December 2024
Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 804201, Taiwan.
This paper presents a copper(I)-catalyzed intramolecular tandem acylation/-arylation of methyl 2-[2-(2-bromophenyl)acetamido]benzoates for the synthesis of benzofuro[3,2-]quinolin-6(5)-ones under mild conditions. The combination of CuI, 1,10-phenanthroline, and KCO in DMSO was found to be the optimal reaction condition, producing the target products in high yields (84-99%) at 70 °C for 16 h. The tandem reaction was applicable to substrates bearing halo, electron-withdrawing, and electron-donating groups at their phenyl moieties with a broad substrate scope.
View Article and Find Full Text PDFJ Mol Biol
December 2024
Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain. Electronic address:
Human rhinoviruses (RV) are among the most frequent human pathogens. As major causative agents of common colds they originate serious socioeconomic problems and huge expenditure every year, and they also exacerbate severe respiratory diseases. No anti-rhinoviral drugs or vaccines are available so far.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Marine Biotechnology, Fish Health, and Nutrition Division, ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Ernakulam North P.O, Kochi, 682 018, India.
Background: Interleukin 10 (IL-10) is uniquely positioned in the immune regulation of teleosts. Modifying the IL-10 pathway changes the teleost's disease susceptibility; however, there is no data on its post-transcriptional regulation. Trachinotus blochii is a high-value mariculture species.
View Article and Find Full Text PDFChemistry
December 2024
University of Münster Department of Chemistry and Pharmacy: Westfalische Wilhelms-Universitat Munster Fachbereich 12 Chemie und Pharmazie, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149, Münster, GERMANY.
Two artificial imidazole-derived nucleobases, HQIm (3H-imidazo[4,5-f]quinolin-5-ol) and CaIm (imidazole-4-carboxylate), were introduced into short DNA duplexes to systematically investigate their thermal stability upon metal ion coordination. Metal-mediated base pairs are formed with the 3d metal ions CoII, NiII and ZnII, as well as with the lanthanoid ions EuIII and SmIII, which induce a thermal stabilization of up to 8 °C upon binding. The latter are the first lanthanoid-mediated base pairs involving only four donor atoms that result in a significant duplex stabilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!