Adhesion molecules play an important role in vascular biology because they mediate vascular stability, permeability, and leukocyte trafficking to and from tissues. Performing microarray analyses, we have recently identified activated leukocyte cell adhesion molecule (ALCAM) as an inflammation-induced gene in lymphatic endothelial cells (LECs). ALCAM belongs to the immunoglobulin superfamily and engages in homophilic as well as heterophilic interactions. In this study, we found ALCAM to be expressed at the protein level in human and murine lymphatic and blood vascular endothelial cells in vitro and in the vasculature of human and murine tissues in vivo. Functional in vitro experiments revealed that ALCAM mediates adhesive interactions, migration, and tube formation in LECs, suggesting a role for ALCAM in lymphatic vessel (LV) stability and in lymphangiogenesis. Furthermore, ALCAM supported dendritic cell (DC) adhesion to lymphatic endothelium. In agreement with these findings, experiments performed in ALCAM mice detected reduced LEC numbers in various tissues and defects in the formation of an organized LV network. Moreover, DC migration from lung to draining lymph nodes was compromised in ALCAM mice. Collectively, our data reveal a novel role for ALCAM in stabilizing LEC-LEC interactions and in the organization and function of the LV network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.12-217844 | DOI Listing |
BMC Gastroenterol
November 2024
Department of Gastroenterology, Shaanxi Provincial People's Hospital, No. 256 Friendship West Road, Beilin District, Xi'an, Shaanxi, 710068, China.
Mol Neurobiol
November 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
Secreted and membrane-tethered mammalian neuromodulators from the Ly6/uPAR family are involved in regulation of many physiological processes. Some of them are expressed in the CNS in the neurons of different brain regions and target neuronal membrane receptors. Thus, Lynx1 potentiates nicotinic acetylcholine receptors (nAChRs) in the brain, while others like Lypd6 and Lypd6b suppress it.
View Article and Find Full Text PDFFront Cell Dev Biol
October 2024
School of Biopharmacy, China Pharmaceutical University, Nanjing, China.
Background: Characterized by an immune-suppressive tumor microenvironment (TME), pancreatic ductal adenocarcinoma (PDAC) is well-known for its poor prognosis. Tumor associated macrophages (TAMs) play a critical role in PDAC TME. An in-depth understanding of TAMs is helpful to develop new strategies for immunotherapy.
View Article and Find Full Text PDFCell Mol Life Sci
October 2024
Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan.
Exp Hematol
October 2024
Department of Biology, University of New Brunswick, Saint John, NB, Canada; Dalhousie Medicine NB, Saint John, NB, Canada; Saint John Regional Hospital, Saint John, NB, Canada. Electronic address:
We and others have previously shown that TAZ plays a tumor suppressive role in multiple myeloma. However, recent reports suggest that molecular crosstalk between the myeloma cells and bone marrow stromal components contributes to the myeloma cell survival and drug resistance. These reports further point to reciprocal interaction via adhesion molecules as the most prominent mechanism of intercellular crosstalk between myeloma cells and bone marrow mesenchymal stromal cells (BM-MSCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!