A dynamic system for single and repeated exposure of airway epithelial cells to gaseous pollutants.

Toxicol In Vitro

Laboratoire de Conception et Application de Molécules Bioactives (LCAMB), UMR 7199 CNRS - Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch Cedex, France.

Published: March 2013

In vitro models are promising approaches to investigate the adverse effects and the mode of action of air pollutants on the respiratory tract. We designed a dynamic system that allows the single or repeated exposure of cultured cells to two major indoor air gaseous pollutants, formaldehyde (HCHO) and nitrogen dioxide (NO2), alone or as a mixture. In this system, the Calu-3 human bronchial epithelial cell line was exposed at the air-liquid interface (ALI) or submerged by culture medium to synthetic air or to target concentrations of HCHO and/or NO2 once or on 4 consecutive days before assessment of cell viability and necrosis, IL-6 and IL-8 release and trans-epithelial electrical resistance. Our data showed that whereas the ALI method can be used for single short-term exposures only, the submerged method provides the possibility to expose Calu-3 cells in a repeated manner. As well, we found that repeated exposures of the cells to HCHO and NO2 at concentrations that can be found indoors triggered a significant decrease in cell metabolism and an increase in IL-8 release that were not evoked by a single exposure. Thus, our work highlights the fact that the development of systems and methods that allow repeated exposures of cultured cells to gaseous compounds in mixtures is of major interest to evaluate the impact of air pollution on the respiratory tract.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2012.11.011DOI Listing

Publication Analysis

Top Keywords

dynamic system
8
single repeated
8
repeated exposure
8
cells gaseous
8
gaseous pollutants
8
respiratory tract
8
cultured cells
8
il-8 release
8
repeated exposures
8
repeated
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!