The emergence and evolutionary expansion of gene families implicated in cancers and other severe genetic diseases is an evolutionary oddity from a natural selection perspective. Here, we show that gene families prone to deleterious mutations in the human genome have been preferentially expanded by the retention of "ohnolog" genes from two rounds of whole-genome duplication (WGD) dating back from the onset of jawed vertebrates. We further demonstrate that the retention of many ohnologs suspected to be dosage balanced is in fact indirectly mediated by their susceptibility to deleterious mutations. This enhanced retention of "dangerous" ohnologs, defined as prone to autosomal-dominant deleterious mutations, is shown to be a consequence of WGD-induced speciation and the ensuing purifying selection in post-WGD species. These findings highlight the importance of WGD-induced nonadaptive selection for the emergence of vertebrate complexity, while rationalizing, from an evolutionary perspective, the expansion of gene families frequently implicated in genetic disorders and cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2012.09.034DOI Listing

Publication Analysis

Top Keywords

gene families
12
deleterious mutations
12
expansion gene
8
expansion "dangerous"
4
gene
4
"dangerous" gene
4
gene repertoires
4
repertoires whole-genome
4
whole-genome duplications
4
duplications early
4

Similar Publications

Joubert syndrome (JS) is a rare neurodevelopmental disorder associated with mutations in genes involved in ciliary function. Germline variants in CPLANE1 have been implicated in JS. In this study, we investigated a family with three adverse pregnancies characterised by fetal malformations consistent with JS.

View Article and Find Full Text PDF

Linking epidemiology and genomics of maternal smoking during pregnancy in utero and in ageing: a population-based study using human foetuses and the UK Biobank cohort.

EBioMedicine

February 2025

Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK; Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany.

Background: Maternal smoking and foetal exposure to nicotine and other harmful chemicals in utero remains a serious public health issue with little knowledge about the underlying genetics and consequences of maternal smoking in ageing individuals. Here, we investigated the epidemiology and genomic architecture of maternal smoking in a middle-aged population and compare the results to effects observed in the developing foetus.

Methods: In the current project, we included 351,562 participants from the UK Biobank (UKB) and estimated exposure to maternal smoking status during pregnancy through self-reporting from the UKB participants about the mother's smoking status around their birth.

View Article and Find Full Text PDF

Clinical Effect of Genetic Testing in Inherited Cardiovascular Diseases: A 14-Year Retrospective Study.

J Am Coll Cardiol

March 2025

Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, Quebec, Canada. Electronic address:

Background: The clinical impact of genetic testing in a contemporary real-life cohort of patients with heritable cardiomyopathies or arrhythmias is not well defined. Additionally, the genetic spectrum of these conditions in the French-Canadian population is unknown, and interpretation of genetic variants can be challenging because of a known founder effect.

Objectives: This study sought to evaluate the clinical utility of arrhythmia and cardiomyopathy genetic testing and assess the utility of allele frequency data from a local reference population.

View Article and Find Full Text PDF

A comprehensive in silico genome-wide identification and characterization of SQUAMOSA promoter binding protein (SBP) gene family in Musa acuminata.

J Genet Eng Biotechnol

March 2025

Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Department of Molecular Biology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh. Electronic address:

One of the largest and most significant transcription factor gene families in plants is the SQUAMOSA promoter binding protein (SBP) gene family and they perform critical regulatory roles in floral enhancement, fruit development, and stress resistance. The SBP protein family (also known as SPL) has not yet been thoroughly studied in the staple fruit crop, banana. A perennial monocot plant, banana is essential for ensuring food and nutrition security.

View Article and Find Full Text PDF

Frankia spp. are multicellular actinobacteria with the ability to fix atmospheric dinitrogen (N). Frankia fixes N not only in the free-living state, but also in root-nodule symbioses with more than 200 plant species called actinorhizal plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!