Aim: Cerebral ischemic postconditioning has emerged recently as a kind of endogenous strategy for neuroprotection. We set out to test whether hypoxia or glucose deprivation (GD) would substitute for ischemia in postconditioning.
Methods: Adult male C57BL/6J mice were treated with postconditioning evoked by ischemia (bilateral common carotid arteries occlusion) or hypoxia (8% O(2) ) after 45-min middle cerebral arterial occlusion. Corticostriatal slices from mice were subjected to 1-min oxygen-glucose deprivation (OGD), GD, or oxygen deprivation (OD) postconditioning at 5 min after 15-min OGD.
Results: Hypoxic postconditioning did not decrease infarct volume or improve neurologic function at 24 h after reperfusion, while ischemic postconditioning did. Similarly, OGD and GD but not OD postconditioning attenuated the OGD/reperfusion-induced injury in corticostriatal slices. The effective duration of low-glucose (1 mmol/L) postconditioning was longer than that of OGD postconditioning. Moreover, OGD and GD but not OD postconditioning reversed the changes of glutamate, GABA, glutamate transporter-1 protein expression, and glutamine synthetase activity induced by OGD/reperfusion.
Conclusions: These results suggest that the transient lack of glucose but not oxygen plays a key role in ischemic postconditioning-induced neuroprotection, at least partly by regulating glutamate metabolism. Low-glucose postconditioning might be a clinically safe and feasible therapeutic approach against cerebral ischemia/reperfusion injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493356 | PMC |
http://dx.doi.org/10.1111/cns.12033 | DOI Listing |
Sci Rep
November 2024
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon, 34141, Republic of Korea.
Stroke remains one of the major health challenges due to its high rates of mortality and long-term disability, necessitating the development of effective therapeutic treatment. This study aims to explore the neuroprotective effects of hypoxic postconditioning (HPC) using a cell-based 3D cortical ischemic-hypoxic injury model. Our model employs murine cells to investigate HPC-induced modulation of glial cell reactivity and intercommunication post-oxygen-glucose deprivation-reoxygenation (OGD-R) injury.
View Article and Find Full Text PDFNeuroscience
August 2023
North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China. Electronic address:
Although hypoxic postconditioning (HPC) has a protective effect on ischemic stroke, its effect on angiogenesis after ischemic stroke is still unclear. This study was designed to investigate the effects of HPC on angiogenesis after ischemic stroke and to preliminarily study the mechanism involved. Oxygen-glucose deprivation (OGD)-intervened bEnd.
View Article and Find Full Text PDFHum Exp Toxicol
March 2023
Department of Anesthesiology, 144991The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Sevoflurane is the most commonly used anesthetic in clinical practice and exerts a protective effect on cerebral ischemia-reperfusion (I/R) injury. This study aims to elucidate the molecular mechanism by which sevoflurane postconditioning protects against cerebral I/R injury. Oxygen-glucose deprivation/reperfusion (OGD/R) model in vitro and the middle cerebral artery occlusion (MCAO) model in vivo were established to simulate cerebral I/R injury.
View Article and Find Full Text PDFNeuroscience
May 2023
The First Affiliated Hospital of Dalian Medical University, China. Electronic address:
The purpose of the study was to investigate the effect of isoflurane postconditioning on neuron injury in MCAO (middle cerebral artery occlusion) rats and its molecular mechanism of affecting autophagy through miR-384-5p/ATG5 (autophagy-related protein 5). HT22 cells (mouse hippocampal neuronal cell line) were exposed to 1.5% isoflurane for 30 min after OGD/R (oxygen-glucose deprivation/reoxygenation).
View Article and Find Full Text PDFExp Neurol
November 2022
Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan Province, China. Electronic address:
Individuals who suffer from post-CA (cardiac arrest) brain injury experience higher mortality and more severe functional disability. Neuroinflammation has been identified as a vital factor in cerebral ischemia-reperfusion injury (CIRI) following CA. Pyroptosis induces neuronal death by triggering an excessive inflammatory injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!