AI Article Synopsis

  • A new poly(phenylenevinylene) polymer, named SO2EH-PPV, was created using a specific chemical reaction called palladium-catalyzed Stille coupling.
  • This polymer exhibits good solubility in common organic solvents, has a high fluorescence quantum yield of 0.95, and its electronic properties show it as a strong electron acceptor with specific energy levels for its electrons.
  • Devices made from this polymer can emit green light and were constructed using a straightforward configuration, showcasing its potential in light-emitting applications.

Article Abstract

A novel symmetrical alkylsulfonyl-substituted poly(phenylenevinylene) derivative, poly [2,5-bis-(2'-ethylhexylsulfonyl)-1,4-phenylene)vinylene] (SO2EH-PPV), was synthesized via palladium-catalyzed Stille coupling, and its electronic and optical properties were investigated. The novel PPV derivative was characterized by NMR, UV-visible absorption, photoluminescence, gel permeation chromatography, infrared spectroscopy, and cyclic voltammetry (CV). The polymer with Mw of 27,800 and a polydispersity index of 2.6 is readily soluble in common organic solvents, such as THF, chloroform, and toluene. The fluorescence quantum yield of the polymer, determined against rhodamine 6G in dilute aqueous solutions, was 0.95. The HOMO and LUMO levels of SO2EH-PPV were calculated to be -6.0 and -3.61 eV, respectively. The results obtained by CV suggest that SO2EH-PPV is a strong electron acceptor polymer. Single layer stable polymer light-emitting diode devices with the configuration of (ITO/PEDOT:PSS/SO2EH-PPV polymer/Al) were fabricated exhibiting a green light emission.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp3080964DOI Listing

Publication Analysis

Top Keywords

novel symmetrical
8
synthesis characterization
4
characterization novel
4
symmetrical sulfone-substituted
4
sulfone-substituted polyphenylene
4
polyphenylene vinylene
4
so2eh-ppv
4
vinylene so2eh-ppv
4
so2eh-ppv applications
4
applications light
4

Similar Publications

This paper introduces a novel approach for the offline estimation of stationary moving average processes, further extending it to efficient online estimation of non-stationary processes. The novelty lies in a unique technique to solve the autocorrelation function matching problem leveraging that the autocorrelation function of a colored noise is equal to the autocorrelation function of the coefficients of the moving average process. This enables the derivation of a system of nonlinear equations to be solved for estimating the model parameters.

View Article and Find Full Text PDF

Imine Synthesis by Engineered d-Amino Acid Oxidase from Porcine Kidney.

ACS Omega

January 2025

Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.

Various symmetric and asymmetric imines were synthesized using the novel amine oxidase, obtained as variants of d-amino acid oxidase (pkDAO) from porcine kidney (Y228L/R283G) and (I230A/R283G). Active primary imines produced as intermediates in the oxidation of methylbenzylamine (MBA) derivatives were trapped by aliphatic, aromatic amines and diamines as nucleophiles forming new imines. ()-Fluoro-MBA was the best substrate for symmetric imine synthesis, providing almost stoichiometric conversion (100 mM) and achieving nearly 100% yield.

View Article and Find Full Text PDF

Supercapacitors are rapidly gaining attention as next-generation energy storage devices due to their superior power and energy densities. This study pioneers the investigation of Mn/Zn co-doping in α-Cu₂V₂O₇ (CVO) to enhance its performance as a supercapacitor electrode material. Structural and local Structural properties of Mn/Zn co-doped CVO have been investigated through X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and X-ray Absorption Spectroscopy (XAS), revealing significant distortions that enhance supercapacitor performance.

View Article and Find Full Text PDF

Singular topological edge states in locally resonant metamaterials.

Sci Bull (Beijing)

January 2025

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea. Electronic address:

Band topology has emerged as a novel tool for material design across various domains, including photonic and phononic systems, and metamaterials. A prominent model for band topology is the Su-Schrieffer-Heeger (SSH) chain, which reveals topological in-gap states within Bragg-type gaps (BG) formed by periodic modification. Apart from classical BGs, another mechanism for bandgap formation in metamaterials involves strong coupling between local resonances and propagating waves, resulting in a local resonance-induced bandgap (LRG).

View Article and Find Full Text PDF

When engaged in dynamic or continuous movements, action initiation involves modifying an ongoing motor program rather than initiating it from rest. Event-related theta synchronization over sensorimotor areas is a neurophysiological marker for modifying motor programs. We used electroencephalography (EEG) to examine how task complexity and age affect event-related synchronization (ERS) in the theta band during a dynamic bimanual, visuomotor pinch force task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!