Mucopolysaccharidosis I (MPS I) is a genetic disorder caused by mutations on α-L-iduronidase (IDUA) gene, leading to low or null enzyme activity. As nonsense mutations are present in about two thirds of the patients, stop codon read through (SCRT) is a potential alternative to achieve enhanced enzyme activity. This mechanism suppresses premature stop codon mutations allowing the protein to be fully translated. Chloramphenicol is a peptidyl transferase inhibitor able to induce readthrough and is efficient in cross the blood brain barrier. In this work, fibroblasts from MPS I patients (p.W402X/p.W402X; p.R89W/p.W402X and p.Q70X/c.1739-1g > t) were treated with chloramphenicol, which resulted in 100-fold increase on IDUA activity on compound heterozygous fibroblasts. cDNA sequencing showed that only the alleles without the nonsense mutation were being amplified, even after treatment, leading us to suggest that the nonsense alleles were targeted to nonsense-mediated mRNA decay and that chloramphenicol acts through a mechanism other than SCRT.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389201011314020009DOI Listing

Publication Analysis

Top Keywords

idua activity
8
enzyme activity
8
chloramphenicol
4
chloramphenicol enhances
4
enhances idua
4
activity
4
activity fibroblasts
4
fibroblasts mucopolysaccharidosis
4
mucopolysaccharidosis patients
4
patients mucopolysaccharidosis
4

Similar Publications

Digital microfluidic platform for dried blood spot newborn screening of lysosomal storage diseases in Campania region (Italy): Findings from the first year pilot project.

Mol Genet Metab

December 2024

Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., 80145 Naples, Italy. Electronic address:

Background: Newborn screening (NBS) is a simple, non-invasive test that allows for the early identification of genetic diseases within the first days of a newborn's life. The aim of NBS is to detect potentially fatal or disabling conditions in newborns as early as possible, before the onset of disease symptoms. Early diagnosis enables timely treatments and improves the quality of life for affected patients.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I (MPS I) is a metabolic disorder characterized by a deficiency in α-l-iduronidase (IDUA), leading to impaired glycosaminoglycan degradation. Current approved treatments seek to restore IDUA levels via enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT). The effectiveness of these treatment strategies in preventing neurodegeneration is limited due to the inability of ERT to penetrate the blood-brain barrier (BBB) and HSCT's limited CNS reconstitution of IDUA levels.

View Article and Find Full Text PDF

Background: Mucopolysaccharidosis type I (MPS I - IDUA gene) is a rare autosomal recessive lysosomal storage disorder. Clinical symptoms, including visceral overload, are progressive and typically begin postnatally. Descriptions of hepatosplenomegaly associated with lysosomal pathology are uncommon during the prenatal period.

View Article and Find Full Text PDF

With the expansion of newborn screening efforts for MPS disorders, the number of identified variants of uncertain significance in IDUA continues to increase. To better define functional consequences of identified IDUA variants, we developed a HEK293-based expression platform that can be used to determine the relative specific activity of variant α-iduronidases by combining a fluorescence-based activity assay and semi-quantitative western blotting. We employed the current platform to characterize over thirty different IDUA variants, including known benign and pathogenic variants, as well as multiple variants of uncertain significance identified through newborn screening.

View Article and Find Full Text PDF
Article Synopsis
  • Mucopolysaccharidosis type I (MPS I) is a rare condition caused by a deficiency in the enzyme α-L-iduronidase (IDUA), leading to the buildup of glycosaminoglycans and various health issues.
  • Current treatments like stem cell transplants and enzyme replacement often fall short in addressing all patient symptoms.
  • In a study with MPS I mice, administering a specific viral vector (RGX-111) at a minimal dose of 10 vector genomes showed significant metabolic improvement and reduced severe symptoms, suggesting a promising approach for human therapy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!