AI Article Synopsis

  • The study focuses on how surface wettability influences the transfer of nanoparticles from wrinkled surfaces to flat substrates, showing that this factor is crucial in the process.
  • This method allows for precise transfer of particles onto patterns with differing wettability, leading to well-organized arrangements that can be controlled at both micro and nano levels.
  • The research highlights the potential for using these techniques to create complex hierarchical structures, which can be valuable for developing new materials, especially in applications like optically functional surface coatings.

Article Abstract

We report on the role of surface wettability during the printing transfer of nanoparticles from wrinkled surfaces onto flat substrates. As we demonstrate, this parameter dominates the transfer process. This effect can further be utilized to transfer colloidal particles in a structured fashion, if the substrates are patterned in wettability. The resulting colloidal arrangements are highly regular over macroscopic surface areas and display distinct pattern features in both the micrometer and nanoscale regime. We study the obtained structures and discuss the potential of this approach for creating hierarchical particle assemblies of high complexity. Our findings not only contribute to a better understanding of technologically relevant colloidal assembly processes, but also open new avenues for the realization of novel materials consisting of nanoparticles. In this regard, the presented structuring method is especially interesting for the design of optically functional surface coatings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la304028fDOI Listing

Publication Analysis

Top Keywords

role substrate
4
substrate wettability
4
wettability nanoparticle
4
transfer
4
nanoparticle transfer
4
transfer wrinkled
4
wrinkled elastomers
4
elastomers fundamentals
4
fundamentals application
4
application hierarchical
4

Similar Publications

A comprehensive study was conducted on the life history parameters of an important vector Culicoides oxystoma Kieffer (Diptera: Ceratopogonidae), to standardize potential rearing procedures. Data on life history traits and rearing conditions are crucial for establishing laboratory colony and conducting vector competence-based studies utilizing specimens with a known rearing history. Six different substrate compositions were used to rear the larvae: S1: habitat mud containing cattle manure + nutrient broth + yeast, S2: yeast, S3: habitat mud containing cattle manure + nutrient broth, S4: nutrient broth, S5: sterile (habitat mud consisting cattle manure + nutrient broth + yeast) and S6: tap water.

View Article and Find Full Text PDF

Ketogenesis is a dynamic metabolic conduit supporting hepatic fat oxidation particularly when carbohydrates are in short supply. Ketone bodies may be recycled into anabolic substrates, but a physiological role for this process has not been identified. Here, we use mass spectrometry-based C-isotope tracing and shotgun lipidomics to establish a link between hepatic ketogenesis and lipid anabolism.

View Article and Find Full Text PDF

ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.

View Article and Find Full Text PDF

Small Molecule Modulators of AMP-Activated Protein Kinase (AMPK) Activity and Their Potential in Cancer Therapy.

J Med Chem

January 2025

Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States.

AMP-activated protein kinase (AMPK) is a central mediator of cellular metabolism and is activated in direct response to low ATP levels. Activated AMPK inhibits anabolic pathways and promotes catabolic activities that generate ATP through the phosphorylation of multiple target substrates. AMPK is a therapeutic target for activation in several chronic metabolic diseases, and there is increasing interest in targeting AMPK activity in cancer where it can act as a tumor suppressor or conversely it can support cancer cell survival.

View Article and Find Full Text PDF

Mining versatile feruloyl esterases: phylogenetic classification, structural features, and deep learning model.

Bioresour Bioprocess

January 2025

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.

Feruloyl esterases (FEs, EC 3.1.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!