Type 1 diabetes is caused by immune-mediated loss of pancreatic beta cells. It has been proposed that inflammatory cytokines play a role in killing beta cells. Expression of interleukin (IL)-1 and tumor necrosis factor (TNF-α) has been detected in islets from patients with type 1 diabetes, and these cytokines can induce beta cell death in vitro. We produced nonobese diabetic (NOD) mice lacking receptors for these cytokines. Islets from mice lacking IL-1RI or TNFR1 were killed when transplanted into wild-type NOD mice, suggesting that cytokine action on beta cells is not required for killing. Mice lacking TNFR1 did not develop diabetes, and mice lacking IL-1R had delayed onset of diabetes, indicating a role for these cytokines in disease development. TNFR1-deficient mice had an increased number of CD4(+) CD25(+) FoxP3(+) regulatory T cells with enhanced suppressive capacity. IL-1 was produced at higher levels in NOD mice and resulted in dilution of suppressor function of CD4(+) CD25(+) FoxP3(+) regulatory T cells. Our data suggest that blocking inflammatory cytokines may increase the capacity of the immune system to suppress type 1 diabetes through regulatory T cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2012.06797.xDOI Listing

Publication Analysis

Top Keywords

regulatory cells
16
type diabetes
16
mice lacking
16
beta cells
12
nod mice
12
inflammatory cytokines
8
cd4+ cd25+
8
cd25+ foxp3+
8
foxp3+ regulatory
8
cells
7

Similar Publications

GITRL enhances cytotoxicity and persistence of CAR-T cells in cancer therapy.

Mol Ther

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:

CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

The accessibility of CAR-T cells in centralized production models faces significant challenges, primarily stemming from logistical complexities and prohibitive costs. However, European Regulation EC No. 1394/2007 introduced a pivotal provision known as the hospital exemption.

View Article and Find Full Text PDF

In our research, we performed temporal transcriptomic profiling of host cells infected with Equid alphaherpesvirus 1 (EHV-1) by utilizing direct cDNA sequencing based on nanopore MinION technology. The sequencing reads were harnessed for transcript quantification at various time points. Viral infection-induced differential gene expression was identified through the edgeR package.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!