Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mechanism of neuron regeneration in the cortex was discovered. Heterokaryon, a cell with two distinct nuclei, is formed by the fusion of neuron with oligodendrocyte. We showed that oligodendrocyte nucleus in heterokaryons is exposed to neuron-specific reprogramming. Oligodendrocyte nucleus becomes similar to neuron nucleus and in result of reprogramming is undefined from it according to morphology (size, shape, chromatin structure). Reprogrammed oligodendrocyte nuclei begin to express the neural specific markers NeuN and MAP2. Rate of transcription in the oligodendrocyte nuclei increases as in neurons. After completion of neuron-specific reprogrammin, second nucleus appears in neuron which increases the functional capacity of the cell. We present evidence that this process is the basis of physiological and reparative regeneration of the brain.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!