The response of endothelial energy metabolism to oxygen supply was studied in cultured coronary endothelial cells from the rat at defined PO2 levels between 0.1 and 100 Torr. In the presence of glucose (5 mM), endothelial respiration (4 nmol O2.min-1.mg protein-1) was independent of the exterior PO2 greater than 3 Torr; oxygen consumption was half maximal at 0.8 Torr. At 100 Torr, lactate production was 26 nmol.min-1.mg protein-1; the decrease of the PO2 to 0.1 Torr resulted in a 2.2-fold increase in lactate production. The contents of ATP, ADP, and AMP were 21, 4, and 2 nmol/mg protein, respectively; they remained constant for 2.5-h incubations at PO2 levels between 0.1 and 100 Torr. In the presence of palmitate (100 microM) plus glutamine (0.5 mM), oxygen consumption was 8 nmol.min-1.mg protein-1 at PO2 levels greater than 3 Torr, and the half-maximal rate was again observed at 0.8 Torr. Lactate production was negligible. At PO2 levels greater than 3 Torr, the cells remained well energized. Below 3 Torr, however, the adenine nucleotide contents rapidly declined. These results demonstrate that the oxygen demand of coronary endothelial cells is low compared with the beating myocardium. In the presence of glucose, aerobic glycolysis is pronounced and the Pasteur effect small. In severe hypoxia (PO2 less than 0.1 Torr) the energetic state remained stable. In the absence of glucose, the energetic state of coronary endothelial cells is sensitive to the exterior PO2 less than 3 Torr, declining concomitantly with the decrease in respiration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.1990.258.3.H689 | DOI Listing |
J Hypertens
November 2024
Faculty of Sport Sciences, Universidad Europea de Madrid.
Objectives: The effects of acute physical exercise in patients with resistant hypertension remain largely unexplored compared with hypertensive patients in general. We assessed the short-term effects of acute moderate-intensity (MICE) and high-intensity interval exercise (HIIE) on the clinic (BP) and 24-h ambulatory blood pressure (ABP) of patients with resistant hypertension.
Methods: Using a crossover randomized controlled design, 10 participants (56 ± 7 years) with resistant hypertension performed three experimental sessions: MICE, HIIE, and control.
Clin Transplant
January 2025
Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Canada.
Introduction: Preclinically, 24-hour continuous Ex-Situ Lung Perfusion (ESLP) is the longest duration achieved in large animal models and rejected human lungs. Here, we present our 36-hour Negative Pressure Ventilation (NPV)-ESLP protocol applied to porcine and rejected human lungs.
Methods: Five sets of donor domestic pig lungs (45-55 kg) underwent 36-hour NPV-ESLP.
ESC Heart Fail
January 2025
Université de Strasbourg, Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Strasbourg, France.
Background And Objectives: Initially described as a benign acute cardiomyopathy, Takotsubo syndrome has been linked to elevated mortality rates. Emerging evidence suggests that unresolved myocardial inflammation may contribute to this adverse prognosis. This study aimed to evaluate the incremental prognostic utility of C-reactive protein (CRP) in conjunction with the InterTAK prognosis score for stratifying long-term mortality in Takotsubo syndrome.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China.
Background: Type I acute myocardial infarction (T1MI) has a very high morbidity and mortality rate. The role of thrombus-derived exosomes (TEs) in T1MI is unclear.
Methods: The objective of this study was to identify the optimal thrombolytic drug and concentration for extracting TEs.
Elife
January 2025
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (/, , and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!