Background: Best recognized for its role in manipulating host reproduction, the parasitic gram-negative Wolbachia pipientis is known to colonize a wide range of invertebrates. The endosymbiotic bacterium has recently been shown to cause a life-shortening effect as well as inhibiting replication of arboviruses in Aedes aegypti; although the molecular mechanisms behind these effects are largely unknown. MicroRNAs (miRNAs) have been determined to have a wide range of roles in regulating gene expression in eukaryotes. A recent study showed that several A. aegypti mosquito miRNAs are differentially expressed when infected with Wolbachia.
Methodology/principal Findings: Based on the prior knowledge that one of these miRNAs, aae-miR-12, is differentially expressed in mosquitoes infected with Wolbachia, we aimed to determine any significance of this mediation. We also set out to characterize the target genes of this miRNA in the A. aegpyti genome. Bioinformatic approaches predicted a list of potential target genes and subsequent functional analyses confirmed that two of these, DNA replication licensing (MCM6) and monocarboxylate transporter (MCT1), are under the regulative control of aae-miR-12. We also demonstrated that aae-miR-12 is critical in the persistence of Wolbachia in the host cell.
Conclusions/significance: Our study has identified two target genes of aae-miR-12, a differentially expressed mosquito miRNA in Wolbachia-infected cells, and determined that the miRNA affects Wolbachia density in the host cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500346 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050049 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!