Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations.

PLoS One

Conservation Science Program, World Wildlife Fund, Washington D. C., USA.

Published: May 2013

Terrestrial long-distance migrations are declining globally: in North America, nearly 75% have been lost. Yet there has been limited research comparing habitat suitability and connectivity models to identify migration corridors across increasingly fragmented landscapes. Here we use pronghorn (Antilocapra americana) migrations in prairie habitat to compare two types of models that identify habitat suitability: maximum entropy (Maxent) and expert-based (Analytic Hierarchy Process). We used distance to wells, distance to water, NDVI, land cover, distance to roads, terrain shape and fence presence to parameterize the models. We then used the output of these models as cost surfaces to compare two common connectivity models, least-cost modeling (LCM) and circuit theory. Using pronghorn movement data from spring and fall migrations, we identified potential migration corridors by combining each habitat suitability model with each connectivity model. The best performing model combination was Maxent with LCM corridors across both seasons. Maxent out-performed expert-based habitat suitability models for both spring and fall migrations. However, expert-based corridors can perform relatively well and are a cost-effective alternative if species location data are unavailable. Corridors created using LCM out-performed circuit theory, as measured by the number of pronghorn GPS locations present within the corridors. We suggest the use of a tiered approach using different corridor widths for prioritizing conservation and mitigation actions, such as fence removal or conservation easements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500376PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049390PLOS

Publication Analysis

Top Keywords

habitat suitability
20
comparing habitat
8
suitability connectivity
8
connectivity models
8
models identify
8
migration corridors
8
circuit theory
8
spring fall
8
fall migrations
8
models
6

Similar Publications

Noctiluca scintillans is one of the most common harmful algal species worldwide. In this study, a MaxEnt model was constructed to calculate the present and future habitat suitability of N. scintillans in the China Sea.

View Article and Find Full Text PDF

Indian Himalayan Region (IHR) supports a plethora of biodiversity with a unique assemblage of many charismatic and endemic species. We assessed the genetic diversity, demographic history, and habitat suitability of blue sheep (Pseudois nayaur) in the IHR through the analysis of the mitochondrial DNA (mtDNA) control region (CR) and Cytochrome b gene, and 14 ecological predictor variables. We observed high genetic divergence and designated them into two genetic lineage groups, i.

View Article and Find Full Text PDF

Dental inflammatory diseases remain a challenging clinical issue, whose causes and development are still not fully understood. During dental caries, bacteria penetrate the tooth pulp, causing pulpitis. To prevent pulp necrosis, it is crucial to promote tissue repair by recruiting immune cells, such as macrophages, able to secrete signal molecules for the pulp microenvironment and thus to recruit dental pulp stem cells (DPSCs) in the damaged site.

View Article and Find Full Text PDF

Changes in species' habitats provide important insights into the effects of climate change. , a critically endangered species endemic to karst ecosystems, has a highly restricted distribution and is a key biological resource. Despite its ecological importance, the factors influencing its habitat suitability and distribution remain poorly understood.

View Article and Find Full Text PDF

Parthenium weed ( L.) is one of the most noxious and fast-spreading invasive alien species, posing a major threat to ecosystems, agriculture, and public health worldwide. Mechanistic and correlative species distribution models are commonly employed to determine the potential habitat suitability of parthenium weed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!