Purpose: Direct visualization of pancreatic ductal tissue is critical for early diagnosis of pancreatic diseases and for guiding therapeutic interventions. A novel, ultrathin (5 Fr) scanning fiber endoscope (SFE) with tip-bending capability has been developed specifically to achieve high resolution imaging as a pancreatoscope during endoscopic retrograde cholangiopancreatography (ERCP). This device has potential to dramatically improve both diagnostic and therapeutic capabilities during ERCP by providing direct video feedback and tool guidance to clinicians.
Methods: Invasiveness of the new tip-bending SFE was evaluated by a performance comparison to ERCP guide wires, which are routinely inserted into the pancreatic duct during ERCP. An in vitro test model with four force sensors embedded in a synthetic pancreas was designed to detect and compare the insertion forces for 0.89 mm and 0.53 mm diameter guide wires as well as the 1.7 mm diameter SFE. Insertions were performed through the working channel of a therapeutic duodenoscope for the two types of guide wires and using a statistically similar direct insertion method for comparison to the SFE.
Results: Analysis of the forces detected by the sensors showed the smaller diameter 0.53 mm wire produced significantly less average and maximum forces during insertion than the larger diameter 0.89 mm wire. With the use of tip-bending and optical visualization, the 1.7 mm diameter SFE produced significantly less average force during insertion than the 0.89 mm wire at every sensor, despite its larger size. It was further shown that the use of tip-bending with the SFE significantly reduced the forces at all sensors, compared to insertions when tip-bending was not used.
Conclusion: Combining high quality video imaging with two-axis tip-bending allows a larger diameter guide wire-style device to be inserted into the pancreatic duct during ERCP with improved capacity to perform diagnostics and therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500967 | PMC |
http://dx.doi.org/10.2147/MDER.S27439 | DOI Listing |
Netw Neurosci
December 2024
Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia.
Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones.
View Article and Find Full Text PDFLangmuir
December 2024
Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China.
The transportation and carrying behavior of underwater bubbles have been widely used for an underwater microactuator, cargo displacement assembly, and drug delivery. This study explores a method for underwater cargo transportation using sliding bubbles as a vehicle with directionally guided superhydrophobic wires. By exploitation of the adhesion between superhydrophobic surfaces and bubble interfaces, a bubble is able to transport a superhydrophobic O-ring along a superhydrophobic wire, effectively delivering the O-ring to the water surface.
View Article and Find Full Text PDFCase Rep Cardiol
December 2024
Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
A 48-year-old male with a history of hyperlipidemia presented to the emergency department with chest pain. Electrocardiographic abnormalities indicated an acute coronary syndrome. Urgent coronary angiography revealed nondominant right coronary artery (RCA) occlusion.
View Article and Find Full Text PDFClin Shoulder Elb
December 2024
Department of Trauma and Orthopaedic, The Royal London Hospital, London, UK.
Background: Iatrogenic suprascapular nerve injury secondary to posterior drilling or screw penetration is a recognized complication of bone block or coracoid process transfers for anterior glenohumeral instability. We present the first cadaveric study that assesses the safety of posteroanterior reference guides and quantifies the relationship of the suprascapular nerve to posterior glenoid fixation with suture buttons.
Methods: Anterior glenoid bone block reconstruction with suture buttons utilizing a posteroanterior reference guide was performed in 10 fresh frozen cadavers via a posterior portal.
J Appl Clin Med Phys
December 2024
Department of Radiation Oncology, Duke University, Durham, North Carolina, USA.
Purpose: This paper outlines the commissioning of the Varian (VMS, Varian Medical Systems, Palo Alto, CA) Universal Interstitial Cylinder (UIC) applicator set for Ir-192 HDR brachytherapy. The UIC was commissioned for use with CT and MRI and a custom phantom was designed to avoid the introduction of water-like materials into the needle guide tracks. Various marker strands were investigated to determine which allowed the most accurate reconstruction of source positions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!