Intermedin (IMD) is a cardiac peptide synthesized in a prepro form, which undergoes a series of proteolytic cleavages and amidations to yield the active forms of 47 (IMD(1-47)) and 40 amino acids (IMD(8-47)). There are several lines of evidence of increased IMD expression in rat models of cardiac pathologies, including congestive heart failure and ischaemia; however, its myocardial effects upon cardiac disease remain unexplored. With this in mind, we investigated the direct effects of increasing concentrations of IMD(1-47) (10(-10) to10(-6) m) on contraction and relaxation of left ventricular (LV) papillary muscles from two rat models of chronic pressure overload, one induced by transverse aortic constriction (TAC), the other by nitric oxide (NO) deficiency due to chronic NO synthase inhibition (NG-nitro-l-arginine, l-NAME), and respective controls (Sham and Ctrl). In TAC and l-NAME rats, exogenous administration of IMD(1-47) elicited concentration-dependent positive inotropic and lusitropic effects. By contrast, in Sham and Ctrl rats, IMD(1-47) induced a negative inotropic response without a significant effect on relaxation. Both TAC and l-NAME rats presented LV hypertrophy, elevated LV systolic pressures, preserved systolic function and elevated peroxynitrite levels. In the normal myocardium (Ctrl and Sham), IMD(1-47) induced a 3-fold increase of endothelial nitric oxide synthase (eNOS) phosphorylation at Ser(1177), indicating enhanced eNOS activity. In TAC and l-NAME rats, eNOS phosphorylation was increased at baseline, and its response to IMD(1-47) was blunted. In addition, the distinct myocardial response to IMD(1-47) was accompanied by distinct subcellular mechanisms. While in Sham rats the addition of IMD(1-47) induced the phosphorylation of cardiac troponin I due to NO/cGMP activation, in TAC rats IMD(1-47) induced phospholamban phosphorylation possibly associated with cAMP/protein kinase A activation. Therefore, we demonstrated for the first time a reversed myocardial response to IMD(1-47) neurohumoral stimulation due to impairment of eNOS activation in TAC and l-NAME rats. These results not only reveal the distinct myocardial effects and subcellular mechanisms for IMD(1-47) in normal and hypertrophic hearts, but also highlight the potential pathophysiological relevance of cardiac endothelial dysfunction in neurohumoral myocardial action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577549PMC
http://dx.doi.org/10.1113/jphysiol.2012.240812DOI Listing

Publication Analysis

Top Keywords

tac l-name
16
l-name rats
16
imd1-47 induced
16
myocardial effects
12
nitric oxide
12
response imd1-47
12
imd1-47
11
endothelial nitric
8
oxide synthase
8
rat models
8

Similar Publications

Background: Metabolic substrate utilization in HFpEF (heart failure with preserved ejection fraction), the leading cause of heart failure worldwide, is pivotal to syndrome pathogenesis and yet remains ill defined. Under resting conditions, oxidation of free fatty acids (FFA) is the predominant energy source of the heart, supporting its unremitting contractile activity. In the context of disease-related stress, however, a shift toward greater reliance on glucose occurs.

View Article and Find Full Text PDF

Empagliflozin prevents heart failure through inhibition of the NHE1-NO pathway, independent of SGLT2.

Basic Res Cardiol

October 2024

Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

Article Synopsis
  • * In experiments with mice, SGLT2 knockout mice showed only mild heart dysfunction, while EMPA significantly improved heart function and reduced fibrosis, edema, and oxidative stress in both normal and SGLT2 knockout mice.
  • * The study suggests that EMPA's protective effects come from its interaction with the sodium hydrogen exchanger 1 (NHE1) and nitric oxide (NO) pathways rather than through SGLT2 inhibition, highlighting the importance of targeting NHE1 for heart failure treatment. *
View Article and Find Full Text PDF

Background: Several pathogenic conditions leading to morbidity, including cancer, aging, diabetes, reperfusion injury, cardiovascular disease, and neurological disorders, are known to be exacerbated by oxidative stress. Antioxidant therapy is effective in the treatment of such disorders and appears to be a potential therapeutic technique to reduce oxidative stress. The aim of our study is to investigate the antioxidant effects of L-ascorbic acid and nitric oxide (NO) modulators on rats suffering from oxidative stress induced by acute restraint stress (RSx1).

View Article and Find Full Text PDF

To reveal the similarities and differences in myocardial metabolic characteristics between heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) mice using metabolomics. The experimental mice were divided into 4 groups, including control, HFpEF, sham and HFrEF groups (10 mice in each group). High fat diet and Nω-nitroarginine methyl ester hydrochloride (L-NAME) were applied to construct a"two-hit"HFpEF mouse model.

View Article and Find Full Text PDF

A novel vaccine targeting β1-adrenergic receptor.

Hypertens Res

June 2023

Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

Beta-blockers are widely used in the treatment of hypertension, heart failure and ischemic heart disease. However, unstandardized medication results in diverse clinical outcomes in patients. The main causes are unattained optimal doses, insufficient follow-up and patients' poor adherence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!