AI Article Synopsis

Article Abstract

During a systematic investigation of the crystallization behaviour of 9,9'-[1,3,4-thiadiazole-2,5-diylbis(2,3-thiophendiyl-4,1-phenylene)]bis[9H-carbazole] (I), six single crystalline solvates were obtained and characterized by X-ray diffraction at 100 K. The structure of the hemi-2-butanone (MEK) solvate contains two crystallographically independent molecules of (I) related by pseudo-inversion symmetry. The structure is polytypic and composed of non-polar (I) layers and polar solvent layers. It can be described according to an extended order-disorder (OD) theory with relaxed vicinity condition. The observed polytype is of a maximum degree of order (MDO). Layer triples of the second MDO polytype are shown by twinning by inversion. The mono-benzene and mono-toluene solvates are isostructural. Whereas the (I) layers are isostructural to those of the idealized description of the hemi-MEK solvate, the solvent layers are non-polar, resulting in a fully ordered structure. The toluene molecule is ordered, the benzene molecule features disorder. The (I) layers in the sesqui-dioxane and sesqui-benzene solvates are isostructural and unrelated to those in the hemi-MEK, mono-benzene and mono-toluene solvates. The solvent layers are isopointal in both sesqui-solvates, but the stacking differs significantly. The hemi-dideuterodichloromethane (DCM-d(2)) solvate is made up of two kinds of (I) rods, spaced by DCM-d(2) molecules. Rods of one kind are similar to analogous rods in the sesqui-dioxane and the sesqui-benzene solvates, whereas rods of the other kind are only remotely related to rods in the hemi-MEK solvate.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0108768112039651DOI Listing

Publication Analysis

Top Keywords

solvent layers
12
order-disorder theory
8
mono-benzene mono-toluene
8
mono-toluene solvates
8
solvates isostructural
8
hemi-mek solvate
8
sesqui-dioxane sesqui-benzene
8
sesqui-benzene solvates
8
rods kind
8
layers
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!