A decade of research has sought to identify circulating endothelial progenitor cells (EPC) in order to harness their potential for cardiovascular regeneration. Endothelial outgrowth cells (EOC) most closely fulfil the criteria for an EPC, but their origin remains obscure. Our aim was to identify the source and precursor of EOC and to assess their regenerative potential compared to mature endothelial cells. EOC are readily isolated from umbilical cord blood (6/6 donors) and peripheral blood mononuclear cells (4/6 donors) but not from bone marrow (0/6) or peripheral blood following mobilization with granulocyte-colony stimulating factor (0/6 donors). Enrichment and depletion of blood mononuclear cells demonstrated that EOC are confined to the CD34(+)CD133(-)CD146(+) cell fraction. EOC derived from blood mononuclear cells are indistinguishable from mature human umbilical vein endothelial cells (HUVEC) by morphology, surface antigen expression, immunohistochemistry, real-time polymerase chain reaction, proliferation, and functional assessments. In a subcutaneous sponge model of angiogenesis, both EOC and HUVEC contribute to de novo blood vessel formation giving rise to a similar number of vessels (7.0 ± 2.7 vs. 6.6 ± 3.7 vessels, respectively, n = 9). Bone marrow-derived outgrowth cells isolated under the same conditions expressed mesenchymal markers rather than endothelial cell markers and did not contribute to blood vessels in vivo. In this article, we confirm that EOC arise from CD34(+)CD133(-)CD146(+) mononuclear cells and are similar, if not identical, to mature endothelial cells. Our findings suggest that EOC do not arise from bone marrow and challenge the concept of a bone marrow-derived circulating precursor for endothelial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/stem.1280 | DOI Listing |
Tissue Barriers
January 2025
Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.
View Article and Find Full Text PDFACS Nano
January 2025
School of Medicine, Nankai University, Tianjin 300071, China.
Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Dermatology, University of Florida College of Medicine, Gainesville, FL 32606, USA.
Despite significant strides in anti-melanoma therapies, resistance and recurrence remain major challenges. A deeper understanding of the underlying biology of these challenges is necessary for developing more effective treatment paradigms. Melanoma single-cell data were retrieved from the Broad Single Cell Portal (SCP11).
View Article and Find Full Text PDFCancers (Basel)
December 2024
Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France.
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic CD5/CD19 B lymphocytes in the blood. These cells migrate to and proliferate in the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL, drug resistance and disease relapse still occur; novel treatment approaches are therefore still needed.
View Article and Find Full Text PDFNutrients
December 2024
Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.
: Endothelial peroxisome proliferator-activated receptor gamma (PPARγ) regulates adipose tissue by facilitating lipid uptake into white adipocytes, but the role of endothelial lipid transport in systemic energy balance remains unclear. Ghrelin conveys nutritional information through the central nervous system and increases adiposity, while deficiency in its receptor, growth hormone secretagogue-receptor (GHSR), suppresses adiposity on a high-fat diet. This study aims to examine the effect of ghrelin/GHSR signaling in the endothelium on lipid metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!