We show that water soluble InP/ZnS core/shell QDs are a safer alternative to CdSe/ZnS QDs for biological applications, by comparing their toxicity in vitro (cell culture) and in vivo (animal model Drosophila). By choosing QDs with comparable physical and chemical properties, we find that cellular uptake and localization are practically identical for these two nanomaterials. Toxicity of CdSe/ZnS QDs appears to be related to the release of poisonous Cd(2+) ions and indeed we show that there is leaching of Cd(2+) ions from the particle core despite the two-layer ZnS shell. Since an almost identical amount of In(III) ions is observed to leach from the core of InP/ZnS QDs, their very low toxicity as revealed in this study hints at a much lower intrinsic toxicity of indium compared to cadmium.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2nr33024eDOI Listing

Publication Analysis

Top Keywords

safer alternative
8
alternative cdse/zns
8
cdse/zns qds
8
cd2+ ions
8
toxicity
5
qds
5
inp/zns safer
4
cdse/zns core/shell
4
core/shell quantum
4
quantum dots
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!