Human hair disorders comprise a number of different types of alopecia, atrichia, hypotrichosis, distinct hair shaft disorders as well as hirsutism and hypertrichosis. Their causes vary from genodermatoses (e.g. hypotrichoses) via immunological disorders (e.g. alopecia areata, autoimmune cicatrical alopecias) to hormone-dependent abnormalities (e.g. androgenetic alopecia). A large number of spontaneous mouse mutants and genetically engineered mice develop abnormalities in hair follicle morphogenesis, cycling, and/or hair shaft formation, whose analysis has proven invaluable to define the molecular regulation of hair growth, ranging from hair follicle development, and cycling to hair shaft formation and stem cell biology. Also, the accumulating reports on hair phenotypes of mouse strains provide important pointers to better understand the molecular mechanisms underlying human hair growth disorders. Since numerous new mouse mutants with a hair phenotype have been reported since the publication of our earlier review on this matter a decade ago, we present here an updated, tabulated mini-review. The updated annotated tables list a wide selection of mouse mutants with hair growth abnormalities, classified into four categories: Mutations that affect hair follicle (1) morphogenesis, (2) cycling, (3) structure, and (4) mutations that induce extrafollicular events (for example immune system defects) resulting in secondary hair growth abnormalities. This synthesis is intended to provide a useful source of reference when studying the molecular controls of hair follicle growth and differentiation, and whenever the hair phenotypes of a newly generated mouse mutant need to be compared with existing ones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jdermsci.2012.10.001 | DOI Listing |
Front Med (Lausanne)
January 2025
Department of Dermatology, Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
Vitiligo is an autoimmune disease characterized by the loss of functional melanocytes in the hair follicles and epidermis, leading to white patches on the skin and mucous membranes. Alopecia areata (AA) is a common immune-mediated condition in which autoimmune attack on hair follicles cause non-scarring hair loss. Both diseases significantly impact patients's physical and mental health.
View Article and Find Full Text PDFJ Invest Dermatol
January 2025
Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK; Directors' Unit, EMBL, Meyerhofstr. 1, 69117 Heidelberg, Germany. Electronic address: https://twitter.com/fionamarywatt.
To investigate heterogeneity of fibroblasts in human fetal skin, we analysed published single-cell RNA sequencing data (8 and 16 post conception weeks (PCW)) and performed single-molecule fluorescence in situ hybridisation to map their spatial distribution and predicted dynamic interactions. Clustering revealed 8 fibroblast populations with developmental stage-specific abundance changes. Proliferative cells (MKI67+) were present at all stages.
View Article and Find Full Text PDFJ Cell Biol
April 2025
Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis.
View Article and Find Full Text PDFJ Dermatolog Treat
December 2024
Department of Dermatology, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
Aim: To present three cases of filler-induced alopecia (FIA) and summarize the current knowledge of its clinical features, mechanisms and treatments.
Methods: In the first two cases, two females developed well-defined triangular patches of hair loss after hyaluronic acid (HA) injections, and received corticosteriod injections with topical 5% minoxidil. The third case described another female who experienced alopecia areata-like hair loss after autologous fat grafting, and received combined therapies including corticosteriod, 5% minoxidil and microneedling.
Int J Pharm
January 2025
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 51006 China. Electronic address:
Androgenic alopecia (AGA), the most prevalent type of progressive hair loss, currently lacks an effective topical treatment regimen. In this study, we synthesized an ionic liquid (IL) to co-solubilize minoxidil (MXD) and finasteride (FIN) and subsequently formulated them into an in situ thermosensitive ionic liquid/cyclodextrin/poloxamer hydrogel (ICPG), termed M + F@ICPG. M + F@ICPG was developed for the transdermal co-delivery of these two drugs, aiming to provide a multipath therapeutic approach for AGA while avoiding the adverse effects commonly associated with oral FIN and topical MXD tincture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!