A photoconductive charge-transfer crystal with mixed-stacking donor-acceptor heterojunctions within the lattice.

Chem Commun (Camb)

Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China.

Published: January 2013

AI Article Synopsis

  • A new charge-transfer cocrystal is created using a pyrene derivative as the electron donor and butyl-viologen as the electron acceptor.
  • The cocrystal features a mixed-stacking structure, which allows for efficient interaction between the donor and acceptor.
  • This design enables the cocrystal to exhibit switchable photoconductivity, meaning its conductive properties can change in response to light.

Article Abstract

A pyrene derivative as the donor and a butyl-viologen as the acceptor were used to construct a novel charge-transfer cocrystal consisting of mixed-stacking structure and having switchable photoconductivity stemming from the donor-acceptor heterojunctions within the lattice.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cc37655eDOI Listing

Publication Analysis

Top Keywords

donor-acceptor heterojunctions
8
heterojunctions lattice
8
photoconductive charge-transfer
4
charge-transfer crystal
4
crystal mixed-stacking
4
mixed-stacking donor-acceptor
4
lattice pyrene
4
pyrene derivative
4
derivative donor
4
donor butyl-viologen
4

Similar Publications

The application of temperature-compensated photonic device is hampered by poor accuracy and overly simplistic functions of propagation in photonic integrated circuits (PICs) field. Herein, we report a new library of donor-acceptor metal-organic framework (D-A MOF) with thermally activated delayed fluorescence (TADF) and the fabricating of temperature-compensated photonic device by virtue of the unique temperature response character of TADF emitters. Highly tunable through-space charge transfer (TSCT) of TADF was realized within the D-A MOFs through a novel strategy that synergistically combines the internal heavy atom effect (HAE) with an external HAE, induced by the incorporation of heavy atoms into different components, achieving the regulable photophysical indicators including adjustable PL wavelength (534 to 592 nm) and surging quantum yield (5.

View Article and Find Full Text PDF

Designing the architecture of donor-acceptor (D-A) pairs is an effective strategy to tailor the electronic structure of conjugated macrocycles for optoelectronic devices. Herein, we present the synthesis of three D-A nanohoops ( = 7, 8, 9) containing a naphthalene diimide (NDI) unit as an acceptor and []cycloparaphenylenes ([]CPPs) moieties as donors. The D-A characteristics of were substantiated through absorption and fluorescence spectroscopic studies, electrochemical investigations, and computational analysis.

View Article and Find Full Text PDF

Due to high binding energy and extremely short diffusion distance of Frenkel excitons in common organic semiconductors at early stage, mechanism of interface charge transfer-mediated free carrier generation has dominated the development of bulk heterojunction (BHJ) organic solar cells (OSCs). However, considering the advancements in materials and device performance, it is necessary to reexamine the photoelectric conversion in current-stage efficient OSCs. Here, we propose that the conjugated materials with specific three-dimensional donor-acceptor conjugated packing potentially exhibit distinctive charge photogeneration mechanism, which spontaneously split Wannier-Mott excitons to free carriers in pure phases.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in organic photovoltaics (OPVs) have significantly improved device efficiency, particularly through the design of nonfullerene acceptors and reducing energy offset at the donor/acceptor interface.
  • Temperature-dependent transient absorption spectroscopy reveals that charge generation in these OPV blends has minimal activation energy (11-21 meV), indicating a highly efficient process that is largely independent of energy offset.
  • While geminate recombination also shows low activation energy, bimolecular charge recombination is significantly influenced by temperature, with an activation energy greater than 400 meV, suggesting that charge generation might be more of an adiabatic process than one governed by traditional Marcus theory.
View Article and Find Full Text PDF

Nanofibrous active layers offer hierarchical control over molecular structure, and the size and distribution of electron donor:acceptor domains, beyond conventional organic photovoltaic architectures. This structure is created by forming donor pathways via electrospinning nanofibers of semiconducting polymer, then infiltrating with an electron acceptor. Electrospinning induces chain and crystallite alignment, resulting in enhanced light-harvesting and charge transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!