Cell-mediated cytotoxic responses are critical for control of Marek's disease virus (MDV) infection and tumour development. However, the mechanisms of virus clearance mediated by cytotoxic responses in the bursa of Fabricius of chickens during MDV infection are not fully understood. In this study, the host cytotoxic responses during MDV infection in the bursa were investigated by examining the expression of genes in the cell lysis pathways. Partial up-regulation existed in the expression of the important cytolytic molecule granzyme A (GzmA), Fas, NK lysin and DNA repair enzyme Ape1, whereas little or no expression appeared in other cytolytic molecules, including perforin (PFN) and Fas ligand (FasL), and molecules involved in DNA repair and apoptosis in the bursa during MDV infection. These results suggest that less sustained cytotoxic activities are generated in the bursa of MDV-infected chickens. The findings of this study provide a more detailed insight into the host cytotoxic responses to MDV infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2012.10.014DOI Listing

Publication Analysis

Top Keywords

mdv infection
20
cytotoxic responses
16
marek's disease
8
disease virus
8
infection bursa
8
bursa fabricius
8
host cytotoxic
8
responses mdv
8
dna repair
8
infection
6

Similar Publications

Rabies causes 59,000 human deaths annually in over 150 countries. Mass dog vaccination (MDV) is key to controlling dog rabies, requiring 70% coverage in the susceptible dog population to eliminate rabies deaths. MDV campaigns must achieve geographical homogeneity of coverage.

View Article and Find Full Text PDF

Coinfection of avian hepatitis E virus and different serotypes of fowl adenovirus in chicken flocks in Shaanxi, China.

Microbiol Spectr

December 2024

Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.

Unlabelled: In poultry, fowl adenovirus (FAdV) and co-infected viruses (such as avian hepatitis E virus, aHEV) are likely to cause decreased egg production, inclusion body hepatitis, and pericardial effusion syndrome. From July to September 2023, eight poultry farms of commercial broilers and commercial layers suffered from increased mortality, decreased egg production, and the presence of hydropericardium-hepatitis syndrome-like gross lesions in Shaanxi province, China. To determine the source of the infection, the viruses of aHEV, FAdV, avian leukosis virus (ALV), Marek's disease virus (MDV), Newcastle disease virus (NDV), and H9N2 avian influenza virus (AIV) were detected.

View Article and Find Full Text PDF

The interest for in ovo feeding has grown in the last decades mainly concerning probiotics, live microorganisms that can actively interact with the embryo. The aim of this study was to evaluate the effects of a multi-strain probiotic diluted in Marek's disease vaccine (MDV) on zootechnical performances, intestinal morphology and spp. infection.

View Article and Find Full Text PDF

MDV-encoded protein kinase U3 phosphorylates WTAP to inhibit transcriptomic mA modification and cellular protein translation.

Vet Microbiol

January 2025

College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:

Marek's disease virus (MDV)-encoded U3 is a highly conserved serine/threonine protein kinase in alpha-herpesviruses. In other alpha-herpesviruses, such as pseudorabies virus (PRV), U3 phosphorylates the N6-methyladenosine (mA) methyltransferase Wilms tumor 1-associated protein (WTAP), inhibiting mA modification. However, the role and mechanism of U3-mediated WTAP phosphorylation during MDV infection remain undefined.

View Article and Find Full Text PDF

Marek's disease (MD), an immunosuppressive disease induced by the Marek's disease virus (MDV), is regarded as an ideal model for lymphoma research to elucidate oncogenic and anti-oncogene genes. Using this model, we found that circRUNX2.2, derived from exon 6 of RUNX2, was significantly upregulated in MDV-infected tumorous spleens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!