Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Since working memory deficits in schizophrenia have been linked to negative symptoms, we tested whether features of the one could predict the treatment outcome in the other. Specifically, we hypothesized that working memory-related functional connectivity at pre-treatment can predict improvement of negative symptoms in antipsychotic-treated patients. Fourteen antipsychotic-naive patients with first-episode schizophrenia were clinically assessed before and after 7 months of quetiapine monotherapy. At baseline, patients underwent functional magnetic resonance imaging while performing a verbal n-back task. Spatial independent component analysis identified task-modulated brain networks. A linear support vector machine was trained with these components to discriminate six patients who showed improvement in negative symptoms from eight non-improvers. Classification accuracy and significance was estimated by leave-one-out cross-validation and permutation tests, respectively. Two frontoparietal and one default mode network components predicted negative symptom improvement with a classification accuracy of 79% (p = 0.003). Discriminating features were found in the frontoparietal networks but not the default mode network. These preliminary data suggest that functional patterns at baseline can predict negative symptom treatment-response in schizophrenia. This information may be used to stratify patients into subgroups thereby facilitating personalized treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1461145712001253 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!