The leaf hairs (trichomes) on the aerial surface of many plant species play important roles in phytochemical production and herbivore protection, and have significant applications in the chemical and agricultural industries. Trichome formation in the model plant Arabidopsis thaliana also presents a tractable experimental system to study cell differentiation and pattern formation in plants and animals. Studies of this developmental process suggest that trichome positioning may be the result of a self-forming pattern, emerging from a lateral inhibition mechanism determined by a network of regulatory factors. Critical to the continued success of these studies is the ability to quantitatively characterize trichome pattern phenotypes in response to mutations in the genes that regulate this process. Advanced protocols for the observation of changes in trichome patterns can be expensive and/or time consuming, and lack user-friendly analysis tools. In order to address some of these challenges, we describe here a strategy based on polarized light microscopy for the quick and accurate measurement of trichome positions, and provide an online tool designed for the quantitative analyses of trichome number, density and patterning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.12075 | DOI Listing |
Anal Chem
January 2025
Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
Diffraction imaging of cells allows rapid phenotyping by the response of intracellular molecules to coherent illumination. However, its ability to distinguish numerous types of human leukocytes remains to be investigated. Here, we show that accurate classification of three lymphocyte subtypes can be achieved with features extracted from cross-polarized diffraction image (p-DI) pairs.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
We have found that surface superstructures made of "monolayer alloys" of Tl and Pb on Si(111), having giant Rashba effect, produce nonreciprocal spin-polarized photocurrent via circular photogalvanic effect (CPGE) by obliquely shining circularly polarized near-infrared (IR) light. CPGE is here caused by the injection of in-plane spin into spin-split surface-state bands, which is observed only on Tl-Pb alloy layers but not on single-element Tl nor Pb layers. In the Tl-Pb monolayer alloys, despite their monatomic thickness, the magnitude of CPGE is comparable to or even larger than the cases of many other spin-split thin-film materials.
View Article and Find Full Text PDFSmall
January 2025
Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhengzhou University, College of Chemistry, No 100. Kexue Avenue, 450001, Zhengzhou, CHINA.
Chiral metal organic cage compounds with excellent circularly polarized luminescent performance have broad application prospects in many fields. Herein, two lanthanide complexes with luminescent properties in the form of racemic hexagonal octahedral cages were synthesized using a tri (β-diketone) ligand. Eu6(C21H6F15O6)8(H2O)6 exhibited red light emission with high quantum yields of 61%.
View Article and Find Full Text PDFJMIR Mhealth Uhealth
January 2025
ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Littoral Côte d'Opale, Univ. Lille, Univ. Artois, 189b, Avenue Maurice Schumann, Centre Universitaire des Darses, Dunkerque, 59375, France, 33 328237357.
Background: Wrist-worn photoplethysmography (PPG) sensors allow for continuous heart rate (HR) measurement without the inconveniences of wearing a chest belt. Although green light PPG technology reduces HR measurement motion artifacts, only a limited number of studies have investigated the reliability and accuracy of wearables in non-laboratory-controlled conditions with actual specific and various physical activity movements.
Objective: The purpose of this study was to (1) assess the reliability and accuracy of the PPG-based HR sensor of the Fitbit Charge 4 (FC4) in ecological conditions and (2) quantify the potential variability caused by the nature of activities.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!