Results on the synthesis of tetrahydroselenophene derivatives from 1-butylseleno-4-alkynes by electrophilic cyclization using iodine as the electrophilic source are presented. This methodology was carried out via a simple process under mild reaction conditions providing the cyclized products in high yields. Electrophilic sources, such as PhSeBr, CuCl(2), and CuBr(2), were also used in this study. The tetrahydroselenophenes obtained by this protocol were submitted to cyanation, Suzuki, and Ullmann cross-coupling reactions to afford good yields of a cross-coupled product.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol302919b | DOI Listing |
Many protein bioconjugation strategies focus on the modification of lysine residues owing to the nucleophilicity of their amine side-chain, the generally high abundance of lysine residues on a protein's surface and the ability to form robustly stable amide-based bioconjugates. However, the plethora of solvent accessible lysine residues, which often have similar reactivity, is a key inherent issue when searching for regioselectivity and/or controlled loading of an entity. A relevant example is the modification of antibodies and/or antibody fragments, whose conjugates offer potential for a wide variety of applications.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry, University of Hyderabad, Gachibowli, Telangana 500046, India.
Tetrahedron
February 2025
Department of Chemistry, Western Washington University, Bellingham, WA 98225 (USA).
Beta-hydroxy ketones can be reduced using a sequence of ruthenium-catalyzed silyl etherification followed by tetrabutylammonium fluoride (TBAF) promoted intramolecular hydrosilylation. Switching from TBAF to tetrabutylammonium difluorotriphenylsilicate (TBAT), even without first forming the silyl ether, gave cyclic dioxasilinane products. These somewhat sensitive compounds could be isolated pure by column chromatography using florisil as the stationary phase.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Jinhua Academy, Zhejiang Chinese Medical University, Jinhua 321015, China. Electronic address:
Benzylisoquinoline alkaloids (BIAs) are the primary active components of Stephania tetrandra. However, the molecular mechanisms underlying BIA biosynthesis in S. tetrandra remain poorly understood.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
The University of Manchester, School of Chemistry & Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Amide bond formation is fundamental in nature and is widely used in the synthesis of pharmaceuticals and other valuable products. Current methods for amide synthesis are often step and atom inefficient, requiring the use of protecting groups, deleterious reagents and organic solvents that create significant waste. The development of cleaner and more efficient catalytic methods for amide synthesis remains an urgent unmet need.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!