Cysteine residues on proteins play key roles in catalysis and regulation. These functional cysteines serve as active sites for nucleophilic and redox catalysis, sites of allosteric regulation, and metal-binding ligands on proteins from diverse classes including proteases, kinases, metabolic enzymes, and transcription factors. In this review, we focus on a few select examples that serve to highlight the multiple functions performed by cysteines, with an emphasis on cysteine-mediated protein activities implicated in cancer. The enhanced reactivity of functional cysteines renders them susceptible to modification by electrophilic species. Toward this end, we discuss recent advancements and future prospects for utilizing cysteine-reactive small molecules as drugs and imaging agents for the treatment and diagnosis of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/cb3005269 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!