Emerging immunosuppressive drugs in myelodysplastic syndromes.

Expert Opin Emerg Drugs

H. Lee Moffitt Cancer Center & Research Institute, Immunology Department, SRB 23033, 12902 Magnolia Dr, Tampa, FL 33612, USA.

Published: December 2012

Introduction: Myelodysplastic syndromes (MDS) are characterized by dysplastic morphologic features and ineffective hematopoiesis. Pathophysiological characteristics change over time making therapeutic development a major challenge. In early MDS, cytopenias arise or are exacerbated by humoral and cellular immune-mediators that suppress hematopoietic progenitor survival and alter the bone marrow microenvironment.

Areas Covered: In this review, current immunosuppressive regimens are described. To identify new therapies that may enhance immunosuppressive therapy (IST) response and identify pharmacodynamic biomarkers for patient selection, the inflammasome, cytokines, metabolic pathways and signaling events are described.

Expert Opinion: Agents with the potential to induce early, durable hematologic remissions are needed and many new immunosuppressive agents are available for investigation. An immune-mediated mechanism is likely to contribute to MDS early after diagnosis. New approaches that interfere with inflammatory pathways in the bone marrow microenvironment may move closer toward sustained disease control in MDS.

Download full-text PDF

Source
http://dx.doi.org/10.1517/14728214.2012.736487DOI Listing

Publication Analysis

Top Keywords

myelodysplastic syndromes
8
bone marrow
8
emerging immunosuppressive
4
immunosuppressive drugs
4
drugs myelodysplastic
4
syndromes introduction
4
introduction myelodysplastic
4
mds
4
syndromes mds
4
mds characterized
4

Similar Publications

Objective: To evaluate the short-term efficacy and safety of eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria (PNH) in China.

Method: Data were retrospectively collected from patients with PNH who received at least 3 months of full-dose eculizumab. Changes in clinical and laboratory indicators after 1, 3, and 6 months of eculizumab therapy and at the end of follow-up were documented.

View Article and Find Full Text PDF

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Introduction: Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited.

View Article and Find Full Text PDF

VAE-Surv: A novel approach for genetic-based clustering and prognosis prediction in myelodysplastic syndromes.

Comput Methods Programs Biomed

January 2025

Computational Biomedicine Unit, Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Torino, Italy.

Background And Objectives: Several computational pipelines for biomedical data have been proposed to stratify patients and to predict their prognosis through survival analysis. However, these analyses are usually performed independently, without integrating the information derived from each of them. Clustering of survival data is an underexplored problem, and current approaches are limited for biomedical applications, whose data are usually heterogeneous and multimodal, with poor scalability for high-dimensionality.

View Article and Find Full Text PDF

Structural Variant Analysis of Complex Karyotype Myelodysplastic Neoplasia Through Optical Genome Mapping.

Genes Chromosomes Cancer

January 2025

Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland.

Myelodysplastic neoplasia with complex karyotype (CK-MDS) poses significant clinical challenges and is associated with poor survival. Detection of structural variants (SVs) is crucial for diagnosis, prognostication, and treatment decision-making in MDS. However, the current standard-of-care (SOC) cytogenetic testing, relying on karyotyping, often yields ambiguous results in cases with CK.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!