The endoplasmic reticulum (ER) is a network of membrane sheets and tubules connected via three-way junctions. A family of proteins, the reticulons, are responsible for shaping the tubular ER. Reticulons interact with other tubule-forming proteins (Dp1 and Yop1p) and the GTPase atlastin. The Arabidopsis homologue of Dp1/Yop1p is HVA22. We show here that a seed-specific isoform of HVA22 labels the ER in tobacco (Nicotiana tabacum) cells but its overexpression does not alter ER morphology. The closest plant homologue of atlastin is RHD3. We show that RHD3-like 2 (RL2), the seed-specific isoform of RHD3, locates to the ER without affecting its shape or Golgi mobility. Expression of RL2-bearing mutations within its GTPase domain induces the formation of large ER strands, suggesting that a functional GTPase domain is important for the formation of three-way junctions. Coexpression of the reticulon RTNLB13 with RL2 resulted in a dramatic alteration of the ER network. This alteration did not depend on an active GTPase domain but required a functional reticulon, as no effect on ER morphology was seen when RL2 was coexpressed with a nonfunctional RTNLB13. RL2 and its GTPase mutants coimmunoprecipitate with RTNLB13. These results indicate that RL2 and RTNLB13 act together in modulating ER morphology.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.12038DOI Listing

Publication Analysis

Top Keywords

gtpase domain
12
shaping tubular
8
endoplasmic reticulum
8
three-way junctions
8
seed-specific isoform
8
rtnlb13 rl2
8
gtpase
5
rl2
5
arabidopsis reticulon
4
reticulon atlastin
4

Similar Publications

RHOBTB2 is a member of the Rho GTPases subfamily of signaling proteins, known tumor suppressors whose loss of function and decreased expression is associated with cancer onset. Beyond its cancer-related role, RHOBTB2 is implicated in rare neurodevelopmental disorders, specifically -related disorders, recognized in 2018 as a subtype of developmental and epileptic encephalopathies (DEE). Common symptoms of these disorders include early-onset epilepsy, severe intellectual disability, microcephaly, and movement disorders.

View Article and Find Full Text PDF

Convergent evolution of type I antifreeze proteins from four different progenitors in response to global cooling.

BMC Mol Cell Biol

December 2024

Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, K7L 3N6, Canada.

Alanine-rich, alpha-helical type I antifreeze proteins (AFPs) in fishes are thought to have arisen independently in the last 30 Ma on at least four occasions. This hypothesis has recently been proven for flounder and sculpin AFPs, which both originated by gene duplication and divergence followed by substantial gene copy number expansion. Here, we examined the origins of the cunner (wrasse) and snailfish (liparid) AFPs.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a uniquely versatile protein with diverse catalytic activities, such as transglutaminase, protein disulfide isomerase, GTPase and protein kinase, and participates in several biological processes. According to information available in the RBP2GO database, TG2 can act as an RNA-binding protein (RBP). RBPs participate in posttranscriptional gene expression regulation, therefore influencing the function of RNA, whereas RNA molecules can also modulate the biological activity of RBPs.

View Article and Find Full Text PDF

The Ras GTPase-activating protein SH3-domain-binding protein 1 (G3BP1) serves as a formidable barrier to viral replication by generating stress granules (SGs) in response to viral infections. Interestingly, viruses, including SARS-CoV-2, have evolved defensive mechanisms to hijack SG proteins like G3BP1 for the dissipation of SGs that lead to the evasion of the host's immune responses. Previous research has demonstrated that the interaction between the NTF2-like domain of G3BP1 (G3BP1) and the intrinsically disordered N-terminal domain (NTD-N) of the N-protein plays a crucial role in regulating viral replication and pathogenicity.

View Article and Find Full Text PDF

The Parkinson's disease (PD)-linked protein Leucine-Rich Repeat Kinase 2 (LRRK2) consists of seven domains, including a kinase and a Roc G domain. Despite the availability of several high-resolution structures, the dynamic regulation of its unique intramolecular domain stack is nevertheless still not well understood. By in-depth biochemical analysis, assessing the Michaelis-Menten kinetics of the Roc G domain, we have confirmed that LRRK2 has, similar to other Roco protein family members, a K value of LRRK2 that lies within the range of the physiological GTP concentrations within the cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!