Macrophages are versatile cells, which phenotype is profoundly influenced by their environment. Pro-inflammatory classically activated or M1 macrophages, and anti-inflammatory alternatively-activated or M2 macrophages represent two extremes of a continuum of functional states. Consequently, macrophages that are present in tumors can exert tumor-promoting and tumor-suppressing activity, depending on the tumor milieu. In this study we investigated how human monocytes-the precursors of macrophages-are influenced by carcinoma cells of different origin. We demonstrate that monocytes, stimulated with breast cancer supernatant, showed increased expression of interleukin (IL)-10, IL-8 and chemokines CCL17 and CCL22, which are associated with an alternatively-activated phenotype. By contrast, monocytes that were cultured in supernatants of colon cancer cells produced more pro-inflammatory cytokines (e.g., IL-12 and TNFα) and reactive oxygen species. Secretome analysis revealed differential secretion of proteins by colon and breast cancer cell lines, of which the proteoglycan versican was exclusively secreted by colon carcinoma cell lines. Reducing active versican by blocking with monoclonal antibodies or shRNA diminished pro-inflammatory cytokine production by monocytes. Thus, colon carcinoma cells polarize monocytes toward a more classically-activated anti-tumorigenic phenotype, whereas breast carcinomas predispose monocytes toward an alternatively activated phenotype. Interestingly, presence of macrophages in breast or colon carcinomas correlates with poor or good prognosis in patients, respectively. The observed discrepancy in macrophage activation by either colon or breast carcinoma cells may therefore explain the dichotomy between patient prognosis and macrophage presence in these different tumors. Designing new therapies, directing development of monocytes toward M1 activated tumor macrophages in cancer patients, may have great clinical benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489735PMC
http://dx.doi.org/10.4161/onci.20427DOI Listing

Publication Analysis

Top Keywords

carcinoma cells
12
breast cancer
8
colon breast
8
cell lines
8
colon carcinoma
8
macrophages
6
monocytes
6
colon
6
carcinoma
5
cells
5

Similar Publications

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.

View Article and Find Full Text PDF

DNA replication initiation drives focal mutagenesis and rearrangements in human cancers.

Nat Commun

December 2024

Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.

The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!