Flooded rice fields are an important source of the greenhouse gas CH(4). Possible carbon sources for CH(4) and CO(2) production in rice fields are soil organic matter (SOM), root organic carbon (ROC) and rice straw (RS), but partitioning of the flux between the different carbon sources is difficult. We conducted greenhouse experiments using soil microcosms planted with rice. The soil was amended with and without (13)C-labeled RS, using two (13)C-labeled RS treatments with equal RS (5 g kg(-1) soil) but different δ(13)C of RS. This procedure allowed to determine the carbon flux from each of the three sources (SOM, ROC, RS) by determining the δ(13)C of CH(4) and CO(2) in the different incubations and from the δ(13)C of RS. Partitioning of carbon flux indicated that the contribution of ROC to CH(4) production was 41% at tillering stage, increased with rice growth and was about 60% from the booting stage onwards. The contribution of ROC to CO(2) was 43% at tillering stage, increased to around 70% at booting stage and stayed relatively constant afterwards. The contribution of RS was determined to be in a range of 12-24% for CH(4) production and 11-31% for CO(2) production; while the contribution of SOM was calculated to be 23-35% for CH(4) production and 13-26% for CO(2) production. The results indicate that ROC was the major source of CH(4) though RS application greatly enhanced production and emission of CH(4) in rice field soil. Our results also suggest that data of CH(4) dissolved in rice field could be used as a proxy for the produced CH(4) after tillering stage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489774 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049073 | PLOS |
Langmuir
January 2025
Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.
Constructing wide and narrow band gap heterogeneous semiconductors is a method to improve the activity of photocatalysts. In this paper, CMS/ZnO heterojunctions were prepared by solvothermal loading of ZnO particles on the surface of CuMoS nanosheets. The photocatalytic H precipitation rate is about 545 μmol·g·h, which is 6.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.
To clarify the effect of heating rate on the thermal decomposition process of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), this study employs molecular dynamic simulations to investigate the thermal decomposition of TATB at heating rates of 20, 40, 60, and 80 K/ps. The initial temperature is uniformly set to 300 K, while the final temperature is set to 3000 K. Results indicate that within the temperature range of 300-3000 K, the thermal decomposition rate of TATB decreases with increasing heating rate, whereas the initial decomposition temperature of TATB increases, consistent with the experimental pattern.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology of China, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, CHINA.
Electrolysis of carbon dioxide (CO2) in acid offers a promising route to overcome CO2 loss in alkaline and neutral electrolytes, but requires concentrated alkali cations (typical ≥3 M) to mitigate the trade-off between low pH and high hydrogen evolution reaction (HER) rate, causing salt precipitation. Here we report a strategy to resolve this problem by introducing tensile strain in a copper (Cu) catalyst, which can selectively reduce CO2 to valuable multicarbon products, particularly ethylene, in a pH 1 electrolyte with 1 M potassium ions. We find that the tension-strained Cu creates an electron-rich surface that concentrates diluted potassium ions, contributing to CO2 activation and HER suppression.
View Article and Find Full Text PDFSmall
January 2025
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
The photocatalytic activity of lead-free perovskite heterostructures currently suffers from low efficiency due to the lack of active sites and the inadequate photogenerated carrier separation, the latter of which is hindered by slow charge transfer at the heterostructure interfaces. Herein, a facile strategy is reported for the construction of lead-free halide-perovskite-based heterostructure with swift interfacial charge transfer, achieved through direct partial conversion of 2D antimony oxybromide SbOBr to generate CsSbBr/SbOBr heterostructure. Compared to the traditional electrostatic self-assembly method, this approach endows the CsSbBr/SbOBr heterostructure with a tightly interconnected interface through in situ partial conversion, significantly accelerating interfacial charge transfer and thereby enhancing the separation efficiency of photogenerated carriers.
View Article and Find Full Text PDFResearch (Wash D C)
January 2024
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
The electrocatalytic carbon dioxide reduction reaction (CORR) at industrial-level current densities provides a sustainable approach to converting CO into value-added fuels and feedstocks using renewable electricity. However, the CORR conducted typically in alkaline and neutral electrolytes encounters some challenges due to the inevitable reaction between CO and OH ions, which undermines CO utilization and leads to poor operational stability. Acidic media present a viable alternative by reducing (bi)carbonate production, thereby enhancing the carbon efficiency and stability in CORR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!