Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities.

J Exp Bot

Plant Biology & Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2AJ, UK.

Published: January 2013

Fully drought-resistant crop plants would be beneficial, but selection breeding has not produced them. Genetic modification of species by introduction of very many genes is claimed, predominantly, to have given drought resistance. This review analyses the physiological responses of genetically modified (GM) plants to water deficits, the mechanisms, and the consequences. The GM literature neglects physiology and is unspecific in definitions, which are considered here, together with methods of assessment and the type of drought resistance resulting. Experiments in soil with cessation of watering demonstrate drought resistance in GM plants as later stress development than in wild-type (WT) plants. This is caused by slower total water loss from the GM plants which have (or may have-morphology is often poorly defined) smaller total leaf area (LA) and/or decreased stomatal conductance (g (s)), associated with thicker laminae (denser mesophyll and smaller cells). Non-linear soil water characteristics result in extreme stress symptoms in WT before GM plants. Then, WT and GM plants are rewatered: faster and better recovery of GM plants is taken to show their greater drought resistance. Mechanisms targeted in genetic modification are then, incorrectly, considered responsible for the drought resistance. However, this is not valid as the initial conditions in WT and GM plants are not comparable. GM plants exhibit a form of 'drought resistance' for which the term 'delayed stress onset' is introduced. Claims that specific alterations to metabolism give drought resistance [for which the term 'constitutive metabolic dehydration tolerance' (CMDT) is suggested] are not critically demonstrated, and experimental tests are suggested. Small LA and g (s) may not decrease productivity in well-watered plants under laboratory conditions but may in the field. Optimization of GM traits to environment has not been analysed critically and is required in field trials, for example of recently released oilseed rape and maize which show 'drought resistance', probably due to delayed stress onset. Current evidence is that GM plants may not be better able to cope with drought than selection-bred cultivars.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/ers326DOI Listing

Publication Analysis

Top Keywords

drought resistance
24
plants
12
drought
8
genetic modification
8
'drought resistance'
8
resistance
6
genetic engineering
4
engineering improve
4
improve plant
4
plant performance
4

Similar Publications

Stay-green sorghum varieties are known for their drought resistance and ability to retain green biomass during grain filling, making them crucial for sustainable agriculture in arid regions. However, there is limited information on their stover yield (SY) and nutritional quality when both grain and forage are harvested. This study assessed five stay-green sorghum varieties at the Bako Agricultural Research Centre using a randomized complete block design with three replications in 2020, 2021, and 2022.

View Article and Find Full Text PDF

Frequent and extreme drought exerts profound effects on vegetation growth and production worldwide. It is imperative to identify key genes that regulate plant drought resistance and to investigate their underlying mechanisms of action. Long-chain fatty acids and their derivatives have been demonstrated to participate in various stages of plant growth and stress resistance; however, the effects of medium-chain fatty acids on related functions have not been thoroughly studied.

View Article and Find Full Text PDF

Spider silk, especially dragline silk from golden silk spiders (Trichonephila clavipes), is an excellent natural material with remarkable mechanical properties. Many studies have focused on the use of plants as biofactories for the production of recombinant spider silk. However, the effects of this material on the mechanical properties or physiology of transgenic plants remain poorly understood.

View Article and Find Full Text PDF

Rheum tanguticum, an endemic species from the Qinghai-Xizang Plateau, is a significant perennial and medicinal plant recognized for its robust resistance to abiotic stresses, including drought, cold, and salinity. To advance the understanding of stress-response mechanisms in R. tanguticum, this study aimed to establish a reliable set of housekeeping genes as references for normalizing RT-qPCR gene expression analyses.

View Article and Find Full Text PDF

Background: Tartary buckwheat is a plant recognized for its resistance to various environmental stresses. Due to its valuable source of phenolic compounds, is also characterized as a medicinal plant; therefore, the aim of this study was to investigate the drought stress for the levels of phenolic compounds in the morphological parts of the plant.

Methods: This experiment was conducted in 7 L pots under laboratory conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!