A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Osteogenesis and expression of the bone marrow niche in endothelial cell-depleted HipOPs. | LitMetric

Osteogenesis and expression of the bone marrow niche in endothelial cell-depleted HipOPs.

J Cell Biochem

Department of Dentistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 4245, Toronto, Ontario, Canada M5S 1A8.

Published: May 2013

The identification and purification of murine multipotent mesenchymal stem cells (MSCs) have been difficult due to their low frequency, the presence of contaminating cell types and lack of unambiguous markers. Using a magnetic micro-beads negative selection technique to remove hematopoietic cells from mouse bone marrow stromal cells (BMSCs), our lab recently isolated a highly purified osteoprogenitor (HipOP) population that was also enriched for other mesenchymal precursors, including MSCs [Itoh and Aubin, 2009]. We now report that HipOPs are also highly enriched in vascular endothelial cells (VECs), which we hypothesized were an accessory cell type regulating osteogenesis. However, when VECs were immunodepleted from HipOPs with anti-CD31 antibodies, the resulting CD31(-) HipOP population had equal osteogenic capacity to the HipOPs in vitro and in vivo. Analysis of gene expression of Ncad, Pth1r, Ang1, Cxcl12, Jag1, Pdgfr-β, α-sma, Desmin, and Ng2 suggested that both HipOPs and CD31(-) HipOPs are hemopoietic stem cell (HSC) niche populations. However, the data support the view that osteoblast differentiation and depletion of VECs modulate the HSC niche.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.24446DOI Listing

Publication Analysis

Top Keywords

bone marrow
8
hipop population
8
hsc niche
8
hipops
6
osteogenesis expression
4
expression bone
4
marrow niche
4
niche endothelial
4
endothelial cell-depleted
4
cell-depleted hipops
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!