We hypothesized that quantitative MS/MS-based proteomics at multiple time points, incorporating rapid microwave and magnetic (M(2) ) sample preparation, could enable relative protein expression to be correlated to disease progression in the experimental autoimmune encephalomyelitis (EAE) animal model of multiple sclerosis. To test our hypothesis, microwave-assisted reduction/alkylation/digestion of proteins from brain tissue lysates bound to C8 magnetic beads and microwave-assisted isobaric chemical labeling were performed of released peptides, in 90 s prior to unbiased proteomic analysis. Disease progression in EAE was assessed by scoring clinical EAE disease severity and confirmed by histopathologic evaluation for central nervous system inflammation. Decoding the expression of 283 top-ranked proteins (p <0.05) at each time point relative to their expression at the peak of disease, from a total of 1191 proteins observed in four technical replicates, revealed a strong statistical correlation to EAE disease score, particularly for the following four proteins that closely mirror disease progression: 14-3-3ε (p = 3.4E-6); GPI (p = 2.1E-5); PLP1 (p = 8.0E-4); PRX1 (p = 1.7E-4). These results were confirmed by Western blotting, signaling pathway analysis, and hierarchical clustering of EAE risk groups. While validation in a larger cohort is underway, we conclude that M(2) proteomics is a rapid method to quantify putative prognostic/predictive protein biomarkers and therapeutic targets of disease progression in the EAE animal model of multiple sclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703760PMC
http://dx.doi.org/10.1002/elps.201200200DOI Listing

Publication Analysis

Top Keywords

microwave magnetic
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
animal model
8
model multiple
8
multiple sclerosis
8
disease progression
8
magnetic proteomics
4
proteomics experimental
4
encephalomyelitis animal
4

Similar Publications

Harnessing the Electronic Spin States of Single Atoms for Precise Electromagnetic Modulation.

Adv Mater

December 2024

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.

By manipulating their asymmetric electronic spin states, the unique electronic structures and unsaturated coordination environments of single atoms can be effectively harnessed to control their magnetic properties. In this research, the first investigation is presented into the regulation of magnetic properties through the electronic spin states of single atoms. Magnetic single-atom one-dimensional materials, M-N-C/ZrO (M = Fe, Co, Ni), with varying electronic spin states, are design and synthesize based on the electronic orbital structure model.

View Article and Find Full Text PDF

Microwave catalytic treatment using magnetically separable CoFeO spinel catalyst for high-rate degradation of malachite green dye.

J Environ Manage

December 2024

Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India. Electronic address:

The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.

View Article and Find Full Text PDF

The increasing demand for controlling electromagnetic waves has led to the construction of a variety of metasurface absorbers with different functionalities. In this Letter, we designed a kind of single-layer metasurfaces with delicately designed hybrid magnetic meta-atoms (HMMAs), which can be operated as perfect absorbers (PAs) for the electromagnetic wave incident at a specified direction, but at the mirror symmetric direction, the nearly total reflection is achieved. This remarkable nonreciprocal phenomenon arises from the time-reversal symmetry (TRS) breaking nature of magnetic surface plasmon as well as the lattice Kerker effect due to the interaction of HMMAs in the single-layer metasurfaces.

View Article and Find Full Text PDF

This article establishes a physical model of the interaction between surface electron beams and plasma with a transverse magnetic field. The dispersion relationship between electron beam and transverse magnetized plasma interaction was derived using perturbation method and field matching method, respectively. We studied the effects of magnetic field, plasma density, electron beam density, and electron beam velocity on radiation frequency and bandwidth.

View Article and Find Full Text PDF

Advancements in electromagnetic microwave absorbers: Ferrites and carbonaceous materials.

Adv Colloid Interface Sci

December 2024

Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India. Electronic address:

Heightened levels of electromagnetic (EM) radiation emitted by electronic devices, communication equipment, and information processing technologies have become a significant concern recently. So, substantial efforts have been devoted for developing novel materials having high EM absorption properties. This critical review article provides an overview of the advancements in understanding and developing such materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!