MS-based proteomics has been the method of choice for biomarker discovery in the field of traumatic brain injury (TBI). Due to its high sensitivity and specificity, MS is now being explored for biomarker quantitative validation in tissue and biofluids. In this study, we demonstrate the use of MS in both qualitative protein identification and targeted detection of acute TBI biomarkers released from degenerating cultured rat cortical mixed neuronal cells, mimicking intracellular fluid in the central nervous system after TBI. Calpain activation was induced by cell treatment with maitotoxin (MTX), a known calcium channel opener. Separate plates of mixed neuronal-glial culture were subjected to excitotoxin N-methyl-D-aspartate (NMDA) and apoptotic inducer staurosporine. Acute TBI biomarkers, GFAP and UCH-L1, were first detected and assessed in the culture media by Western blot. The cell-conditioned media were then trypsinized and subjected to bottom up proteomic analysis. GFAP was readily detected by data-dependent scanning but not UCH-L1. As a proof-of-principle study, rat glia-enriched cell cultures treated with MTX were used to investigate the time-dependent release of GFAP breakdown product by Western blot and for isotope dilution MS absolute quantitation method development. Absolute quantitation of the GFAP release was conducted using the three cortical mixed neuronal cell cultures treated with different agents. Other differentially expressed proteins identified in the glial-enriched and cortical mixed neuronal cell culture models were further analyzed by bioinformatic tools. In summary, this study demonstrates the use of MS in both protein identification and targeted quantitation of acute TBI biomarkers and is the preliminary step toward development of TBI biomarker validation by targeted MS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.201200326 | DOI Listing |
Ther Adv Hematol
January 2025
Hematology and Stem Cell Transplantation Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy.
J Headache Pain
January 2025
Department of Psychology, University of Innsbruck, Innsbruck, Austria.
Background: Headache is one of the most common post-concussion symptoms following pediatric traumatic brain injury (TBI). To better understand its impact on young individuals, this study aims to investigate the prevalence of headache in a German-speaking post-acute pediatric TBI sample and compare it with the general population. In addition, factors associated with the development of pediatric post-TBI headache are investigated to improve the understanding of this condition.
View Article and Find Full Text PDFNat Commun
January 2025
Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
Traumatic brain injury (TBI) is a risk factor for neurodegeneration, however little is known about how this kind of injury alters neuron subtypes. In this study, we follow neuronal populations over time after a single mild TBI (mTBI) to assess long ranging consequences of injury at the level of single, transcriptionally defined neuronal classes. We find that the stress-responsive Activating Transcription Factor 3 (ATF3) defines a population of cortical neurons after mTBI.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Goal: Current methodologies for assessing cerebral compliance using pressure sensor technologies are prone to errors and issues with inter- and intra-observer consistency. RAP, a metric for measuring intracranial compensatory reserve (and therefore compliance), holds promise. It is derived using the moving correlation between intracranial pressure (ICP) and the pulse amplitude of ICP (AMP).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia.
Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!