Toxicity of forest fire retardant chemicals to stream-type chinook salmon undergoing parr-smolt transformation.

Environ Toxicol Chem

Environmental Conservation Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Newport, OR, USA.

Published: January 2013

Long-term fire retardants are used to prevent the spread of wildland fires. These products are normally applied by aircraft and are intended specifically for terrestrial application, but fire retardants have entered aquatic habitats by misapplication and/or accidental spills and have resulted in fish mortalities. The authors examined the toxicity of two fire retardant products, PHOS-CHEK 259F and LC-95A, to salmon undergoing parr-smolt transformation. Yearling stream-type chinook salmon at the smolt stage were exposed to eight concentrations of each retardant in freshwater and a no-PHOS-CHEK control for 96 h to determine acute toxicity. Concentrations of the products that caused 50% mortality were 140.5 and 339.8 mg/L for 259F and LC-95A, respectively, and could occur during accidental drops into aquatic habitats. Damage to gill tissues seen in histopathological sections was attributed to fire retardant exposure. Un-ionized ammonia levels, from 259F, were sufficient to cause acute mortality; but additional factors, indicated by increased phagosome prevalence in the gills, might have contributed to mortality during LC-95A exposure. Seawater and disease challenges were performed to determine sublethal effects of product exposures on fish health. Although PHOS-CHEK exposure did not adversely affect chinook salmon's susceptibility to Listonella anguillarum, exposure did significantly reduce seawater survival. Reduced salmon survival resulting from prior fire retardant exposure during their transition from freshwater rearing environments to seawater may decrease the abundance of salmon populations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.2052DOI Listing

Publication Analysis

Top Keywords

fire retardant
16
stream-type chinook
8
chinook salmon
8
salmon undergoing
8
undergoing parr-smolt
8
parr-smolt transformation
8
fire retardants
8
aquatic habitats
8
259f lc-95a
8
retardant exposure
8

Similar Publications

Solvometallurgical recovery of antimony from waste polyvinyl chloride plastic and co-extraction of organic additives.

RSC Adv

January 2025

Waste Recycling Technologies, Materials & Chemistry Unit, Flemish Institute for Technological Research, VITO N.V. Boeretang 200 B-2400 Mol Belgium

Antimony is a critical raw material in Europe wherein for 43% of its market share it is applied in the form of antimony trioxide as a fire retardant in plastics. Currently, antimony recycling from waste plastics does not take place and has been scarcely studied. In this work, a process was developed to extract antimony from a soft PVC material and recover it as SbClO.

View Article and Find Full Text PDF

E-waste, a global environmental concern, particularly affects developing nations due to the rise in informal recycling practices. This leads to contamination of environmental matrices, posing threats to both ecosystems and human health. To assess this issue, we monitored brominated flame retardants (BFRs) in 164 samples (soil) from 32 informal e-waste operational locations and 9 background locations across nine mega cities of Pakistan from September 2020 to December 2021.

View Article and Find Full Text PDF

Fire Resistant Adhesive from Chitosan.

Biomacromolecules

January 2025

Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.

Chitosan is one of the most abundant biopolymers on earth. It is used as a nontoxic alternative in a wide range of medicines, packaging, adhesives, and flame retardants. Chitosan is poorly soluble in neutral or alkaline solutions, but it dissolves in solutions of weak acids, such as acetic acid or citric acid, both of which occur naturally.

View Article and Find Full Text PDF

Comparison of blending and bonding of phytic acid arginine salt and cellulose nanofibers on their synergistic flame-retardant effect in poly (butylene succinate).

Int J Biol Macromol

January 2025

School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; China Advanced Flame Retardant Engineering Technology Research Center for Light Industry, Beijing 100048, China; Engineering laboratory for halogen-free flame retardants for polymer materials in the petroleum and chemical industry, Beijing 100048, China.

In this study, cellulose nanofibers (CNFs) were utilized as a synergistic agent, and combined with phytic acid arginine salt (PaArg) via blending and bonding. The effects of these different binding techniques of CNFs and PaArg on the flame retardant and mechanical properties of poly (butylene succinate) (PBS) were explored. The results indicated that both blended and bonded CNFs and PaArg enabled PBS composites to achieve a UL 94 V-0 rating, with the limiting oxygen index (LOI) value of the composite exceeding 28 %.

View Article and Find Full Text PDF

Novel high-efficiency nano metal oxide based on phosphorus as smart flame retardants with multiple reactive for sustainable cotton-polyester fabrics.

Int J Biol Macromol

January 2025

Petrochemical Engineering Department, Faculty of Engineering, Pharos University, Alexandria, Egypt. Electronic address:

Textile materials are extensively used due to their advantageous properties; however, their inherent flammability presents significant safety risks, particularly in residential and historical settings. To mitigate these risks, the integration of flame-retardant agents into textile fabrics is essential for enhancing fire resistance and advancing sustainable development. In this study, cotton-polyester fabrics were treated with a flame-retardant composite containing nano graphene oxide (NGO), sodium hypophosphite dihydrate (SHFDH), and lignin (L).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!