Hepatitis B core antigen (HBcAg) expressed in Escherichia coli is able to self-assemble into large and small capsids comprising 240 (triangulation number T = 4) and 180 (triangulation number T = 3) subunits, respectively. Conventionally, sucrose density gradient ultracentrifugation and SEC have been used to separate these capsids. However, good separation of the large and small particles with these methods is never achieved. In the present study, we employed a simple, fast, and cost-effective method to separate the T = 3 and T = 4 HBcAg capsids by using native agarose gel electrophoresis followed by an electroelution method (NAGE-EE). This is a direct, fast, and economic method for isolating the large and small HBcAg particles homogenously based on the hydrodynamic radius of the spherical particles. Dynamic light scattering analysis demonstrated that the T = 3 and T = 4 HBcAg capsids prepared using the NAGE-EE method are monodisperse with polydispersity values of ∼15% and ∼13%, respectively. ELISA proved that the antigenicity of the capsids was not affected in the purification process. Overall, NAGE-EE produced T = 3 and T = 4 capsids with a purity above 90%, and the recovery was 34% and 50%, respectively (total recovery of HBcAg is ∼84%), and the operation time is 15 and 4 times lesser than that of the sucrose density gradient ultracentrifugation and SEC, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201200257DOI Listing

Publication Analysis

Top Keywords

large small
12
native agarose
8
agarose gel
8
gel electrophoresis
8
electrophoresis electroelution
8
fast cost-effective
8
cost-effective method
8
method separate
8
triangulation number
8
sucrose density
8

Similar Publications

Silica Nanoparticle-Protein Aggregation and Protein Corona Formation Investigated with Scattering Techniques.

ACS Appl Mater Interfaces

January 2025

School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia.

Protein-nanoparticle interactions and the resulting corona formation play crucial roles in the behavior and functionality of nanoparticles in biological environments. In this study, we present a comprehensive analysis of protein corona formation with superfolder green fluorescent protein (sfGFP) and bovine serum albumin in silica nanoparticle dispersions using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). For the first time, we subtracted the scattering of individual proteins in solution and individual nanoparticles from the protein-nanoparticle complexes.

View Article and Find Full Text PDF

Total population for a resource-limited single consumer model.

J Math Biol

January 2025

Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.

In the past several decades, much attention has been focused on the effects of dispersal on total populations of species. In Zhang (EL 20:1118-1128, 2017), a rigorous biological experiment was performed to confirm the mathematical conclusion: Dispersal tends to enhance populations under a suitable hypothesis. In addition, mathematical models keeping track of resource dynamics in population growth were also proposed in Zhang (EL 20:1118-1128, 2017) to understand this remarkable phenomenon.

View Article and Find Full Text PDF

Slopes influenced by multiple faults are prone to large-scale landslides triggered by multi-regional failures. Understanding the failure process and sequence is essential for the sustainable development of mining operations. This paper presents a method combining InSAR monitoring and numerical simulation to analyze the failure processes of slopes affected by multiple faults.

View Article and Find Full Text PDF

Objective: To determine the effects of rapid (1 minute) and slow (10 minutes) intravenous (IV) injection of sodium penicillin on arterial blood pressure in anesthetized horses.

Study Design: Prospective randomized clinical trial.

Animals: A group of 29 client-owned horses of various breeds, 1-20 years old, with body masses of 360-710 kg.

View Article and Find Full Text PDF

High-affinity VNARs targeting human hemoglobin: Screening, stability and binding analysis.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:

Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!