CE-MS has emerged as a powerful technique for the profiling of (highly) polar and charged metabolites in biological samples. This review provides an update of the most recent developments in CE-MS for metabolomics covering the scientific literature from July 2010 to June 2012. The present paper is an update of two previous review papers covering the years 2000-2010 (Electrophoresis 2009, 30, 276-291; Electrophoresis 2011, 32, 52-65). Emerging technological developments used in CE-MS for metabolomics are discussed, such as the use of novel interfacing techniques for coupling CE to MS. Representative examples illustrate the applicability of CE-MS in the fields of biomedical, clinical, microbial, plant, environmental and food metabolomics. Concerning targeted and non-targeted approaches, a comprehensive overview of recent CE-MS-based metabolomics studies is given in a table. Information on sample type and pretreatment, capillary coatings and MS detection mode is provided. Finally, general conclusions and perspectives are provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.201200390 | DOI Listing |
Talanta
January 2025
Department of Chemistry-BMC, Uppsala University, 75123, Uppsala, Sweden; Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, Sweden. Electronic address:
Spatial metabolomics offers the combination of molecular identification and localization. As a tool for spatial metabolomics, mass spectrometry imaging (MSI) can provide detailed information on localization. However, molecular annotation with MSI is challenging due to the lack of separation prior to mass spectrometric analysis.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
Mass spectrometry (MS)-based metabolomics often rely on separation techniques when analyzing complex biological specimens to improve method resolution, metabolome coverage, quantitative performance, and/or unknown identification. However, low sample throughput and complicated data preprocessing procedures remain major barriers to affordable metabolomic studies that are scalable to large populations. Herein, we introduce PeakMeister as a new software tool in the R statistical environment to enable standardized processing of serum metabolomic data acquired by multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), a high-throughput separation platform (<4 min/sample) which takes advantage of a serial injection format of 13 samples within a single analytical run.
View Article and Find Full Text PDFMetabolites
November 2024
Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, 4-7-1 Wakasato, Nagano City 380-8553, Nagano Prefecture, Japan.
Methods Mol Biol
October 2024
Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
J Am Soc Mass Spectrom
September 2024
Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
Capillary electrophoresis coupled with tandem mass spectrometry (CE-MS/MS) offers advantages in peak capacity and sensitivity for metabolic profiling owing to the electroosmotic flow-based separation. However, the utilization of data-independent MS/MS acquisition (DIA) is restricted due to the absence of an optimal procedure for analytical chemistry and its related informatics framework. We assessed the mass spectral quality using two DIA techniques, namely, all-ion fragmentation (AIF) and variable DIA (vDIA), to isolate 60-800 Da precursor ions with respect to annotation rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!