Phosphatase and tensin homolog (PTEN) plays essential roles in cellular processes including survival, proliferation, energy metabolism, and cellular architecture. Activating the mutations of PTEN has long been known to produce a variety of disorders, mainly diabetes and cancer in humans. Owing to the importance of PTEN gene, a functional analysis using different in silico approaches was undertaken to explore the possible associations between genetic mutations and phenotypic variation. SIFT, PolyPhen, I-Mutant 3.0, SNP&GO, and PHD-SNP were used for initial screening of functional nsSNPs. From the observed results, three mutations R47G, H61D, and V343E were selected based on their surface accessibility and total energy change. By molecular dynamics approach, H61D showed increase in flexibility, radius of gyration, solvent accessibility, and deviated more from the native structure which was supported by the decrease in the number of hydrogen bonds. Further from principal component analysis and interaction analysis, we identified significant structural changes that can reasonably explain the involvement of deviations in stability caused by mutations. Our analysis also predicts the involvement of SNPs that could potentially influence post-translational modifications in PTEN gene. These in silico predictions could provide a new insight into structural and functional impact of PTEN polymorphisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12013-012-9472-9 | DOI Listing |
Bio Protoc
January 2025
Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA.
The initiation and progression of prostate cancer (PCa) are associated with aging. In the history of age-related PCa research, mice have become a more popular animal model option than any other species due to their short lifespan and rapid reproduction. However, PCa in mice is usually induced at a relatively young age, while it spontaneously develops in humans at an older age.
View Article and Find Full Text PDFDespite rapid advances in genomic sequencing, most rare genetic variants remain insufficiently characterized for clinical use, limiting the potential of personalized medicine. When classifying whether a variant is pathogenic, clinical labs adhere to diagnostic guidelines that comprehensively evaluate many forms of evidence including case data, computational predictions, and functional screening. While a substantial amount of clinical evidence has been developed for these variants, the majority cannot be definitively classified as 'pathogenic' or 'benign', and thus persist as 'Variants of Uncertain Significance' (VUS).
View Article and Find Full Text PDFMol Ther
January 2025
School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:
The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene Delivery approach Admitted by small Metabolites, named gDAM, for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM utilizes a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells.
View Article and Find Full Text PDFClin Transl Oncol
January 2025
Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland.
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in , , and/or (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!