Coulter counters have played an important role in biological cell assays since their introduction decades ago. Several types of high throughput micro-Coulter counters based on lab-on-chip devices have been commercialized recently. In this paper, we propose a highly integrated micro-Coulter counter array working under low DC voltage. The real-time electrical current change, including the pulse amplitude and width, of the micro-Coulter counter with novel structure is systematically investigated numerically. The major types of forces exerted on the particle in the micro-Coulter counter, including hydrodynamic force and electrokinetic force are quantitatively analyzed. The simulation in this study shows the pulse profile, such as width and amplitude, is affected by both particle size and the flow condition. The special cases of multiple particle aggregation and cross-talk between neighboring channels are also considered for their effects on the electric current pulses. This simulation provides critical insight and guidance for developing next new generations of micro-Coulter counter.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201200418DOI Listing

Publication Analysis

Top Keywords

micro-coulter counter
16
counter array
8
counter
5
micro-coulter
5
numerical simulation
4
simulation coulter
4
coulter counter
4
array analysis
4
analysis electrokinetic
4
electrokinetic forces
4

Similar Publications

Label-free counting of affinity-enriched circulating tumor cells (CTCs) using a thermoplastic micro-Coulter counter (μCC).

Analyst

March 2020

Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA and Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA and BioFluidica, Inc., Lawrence, KS 66047, USA. and BioEngineering Program, The University of Kansas, Lawrence, KS 66047, USA and Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66047.

Coulter counters are used for counting particles and biological cells. Most Coulter counters are designed to analyze a sample without the ability to pre-process the sample prior to counting. For the analysis of rare cells, such as circulating tumor cells (CTCs), it is not uncommon to require enrichment before counting due to the modest throughput of μCCs and the high abundance of interfering cells, such as blood cells.

View Article and Find Full Text PDF

Flow focusing microfluidic devices (FFMDs) have been investigated for the production of monodisperse populations of microbubbles for chemical, biomedical and mechanical engineering applications. High-speed optical microscopy is commonly used to monitor FFMD microbubble production parameters, such as diameter and production rate, but this limits the scalability and portability of the approach. In this work, a novel FFMD design featuring integrated electronics for measuring microbubble diameters and production rates is presented.

View Article and Find Full Text PDF

We report a high-sensitivity cell secretome detection method using competitive immuno-aggregation and a micro-Coulter counter. A target cell secretome protein competes with anti-biotin-coated microparticles (MPs) to bind with a biotinylated antibody (Ab), causing decreased aggregation of the functionalized MPs and formation of a mixture of MPs and aggregates. In comparison, without the target cell secretome protein, more microparticles are functionalized, and more aggregates are formed.

View Article and Find Full Text PDF

In situ single cell detection via microfluidic magnetic bead assay.

PLoS One

August 2017

Department of Mechanical Engineering, University of Akron, Akron, Ohio, United States of America.

We present a single cell detection device based on magnetic bead assay and micro Coulter counters. This device consists of two successive micro Coulter counters, coupled with a high gradient magnetic field generated by an external magnet. The device can identify single cells in terms of the transit time difference of the cell through the two micro Coulter counters.

View Article and Find Full Text PDF

Microfluidic Magnetic Bead Assay for Cell Detection.

Anal Chem

January 2016

Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, United States.

We present a novel cell detection device based on a magnetic bead cell assay and microfluidic Coulter counting technology. The device cannot only accurately measure cells size distribution and concentration but also detect specific target cells. The device consists of two identical micro Coulter counters separated by a fluid chamber where an external magnetic field is applied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!