We characterized the dynamics of proteorhodopsin (PR), solubilized in diC7PC, a detergent micelle, by liquid-state NMR spectroscopy at T = 323 K. Insights into the dynamics of PR at different time scales could be obtained and dynamic hot spots could be identified at distinct, functionally relevant regions of the protein, including the BC loop, the EF loop, the N-terminal part of helix F and the C-terminal part of helix G. We further characterize the dependence of the photocycle on different detergents (n-Dodecyl β-D-maltoside DDM; 1,2-diheptanoyl-sn-glycero-3-phosphocholine diC7PC) by ultrafast time-resolved UV/VIS spectroscopy. While the photocycle intermediates of PR in diC7PC and DDM exhibit highly similar spectral characteristics, significant changes in the population of these intermediates are observed. In-situ NMR experiments have been applied to characterize structural changes during the photocycle. Light-induced chemical shift changes detected during the photocycle in diC7PC are very small, in line with the changes in the population of intermediates in the photocycle of proteorhodopsin in diC7PC, where the late O-intermediate populated in DDM is missing and the population is shifted towards an equilibrium of intermediates states (M, N, O) without accumulation of a single populated intermediate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10858-012-9684-8 | DOI Listing |
Microb Ecol
January 2025
Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
Coral thermal tolerance is intimately linked to their symbiotic relationships with photosynthetic microorganisms. However, the potential compensatory role of symbiotic photosynthetic bacteria in supporting Symbiodiniaceae photosynthesis under extreme summer temperatures remains largely unexplored. Here, we examined the seasonal variations in Symbiodiniaceae and photosynthetic bacterial community structures in Pavona decussata corals from Weizhou Island, Beibu Gulf, China, with particular emphasis on the role of photosynthetic bacteria under elevated temperature conditions.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France.
The bacterial flagellar motor (BFM) is a rotary molecular machine that drives critical bacterial processes including motility, chemotaxis, biofilm formation, and infection. For over two decades, the bead assay, which measures the rotation of a microparticle attached to the flagellum of a surface-attached bacterium, has been instrumental in deciphering the motor's biophysical mechanisms. This technique has not only quantified the rotational speed and frequency of directional switching as a function of the viscous load on the flagellum but has also revealed the BFM's capacity for mechanosensitive speed modulation, adapting to environmental conditions.
View Article and Find Full Text PDFJ Photochem Photobiol B
November 2024
Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, 21071 Huelva, Spain. Electronic address:
Salinity has a strong influence on microorganisms distribution patterns and consequently on the relevance of photoheterotrophic metabolism, which since the discovery of proteorhodopsins is considered the main contributor to solar energy capture on the surface of the oceans. Solar salterns constitute an exceptional system for the simultaneous study of several salt concentrations, ranging from seawater, the most abundant environment on Earth, to saturated brine, one of the most extreme, which has been scarcely studied. In this study, pigment composition across the salinity gradient has been analyzed by spectrophotometry and RP-HPLC, and the influence of salinity on microbial diversity of the three domains of life has been evaluated by a metataxonomic study targeting hypervariable regions of 16S and 18S rRNA genes.
View Article and Find Full Text PDFJ Phys Chem B
October 2024
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States.
Proteorhodopsin (PR) is a microbial proton pump that plays a significant role in phototrophy of bacteria in marine environments. Fundamental understanding of the structure-function relationship that drives proton pumping in PR has largely been elusive due to a lack of high-resolution structures of the photointermediates in the PR photocycle. Extending upon previous work, we used long-time scale molecular dynamics (MD) simulations to characterize the M state of the blue variant of PR, which represents the first proton transfer that takes place in the photocycle.
View Article and Find Full Text PDFNat Commun
August 2024
Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland.
Microbial ion-pumping rhodopsins (MRs) are extensively studied retinal-binding membrane proteins. However, their biogenesis, including oligomerisation and retinal incorporation, remains poorly understood. The bacterial green-light absorbing proton pump proteorhodopsin (GPR) has emerged as a model protein for MRs and is used here to address these open questions using cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!