Prostanoids are prominent, yet complex, components in the maintenance of body water homeostasis. Recent functional and molecular studies have revealed that the local lipid mediator PGE2 is involved both in water excretion and absorption. The biologic actions of PGE2 are exerted through four different G-protein-coupled receptors; designated EP1-4, which couple to separate intracellular signaling pathways. Here, we discuss new developments in our understanding of the actions of PGE2 that have been uncovered utilizing receptor specific agonists and antagonists, EP receptor and PG synthase knockout mice, polyuric animal models, and the new understanding of the molecular regulation of collecting duct water permeability. The role of PGE2 in urinary concentration comprises a variety of mechanisms, which are not fully understood and likely depend on which receptor is activated under a particular physiologic condition. EP3 and microsomal PG synthase type 1 play a role in decreasing collecting duct water permeability and increasing water excretion, whereas EP2 and EP4 can bypass vasopressin signaling and increase water reabsorption through two different intracellular signaling pathways. PGE2 has an intricate role in urinary concentration, and we now suggest how targeting specific prostanoid receptor signaling pathways could be exploited for the treatment of disorders in water balance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1681/ASN.2012020217 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.
View Article and Find Full Text PDFSci Rep
January 2025
School of Medicine, Nankai University, Tianjin, 300071, China.
Cholangiocarcinoma (CCA), a highly aggressive form of cancer, is known for its high mortality rate. A Disintegrin and Metalloprotease Domain-like Protein Decysin-1 (ADAMDEC1) can promote the development and metastasis in various tumors by degrading the extracellular matrix. However, its regulatory mechanism in CCA remains unclear.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established.
View Article and Find Full Text PDFPreserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!